Show simple item record

dc.contributor.authorGoldstein, Stanisław
dc.contributor.authorPaszkiewicz, Adam
dc.date.accessioned2021-11-17T10:38:04Z
dc.date.available2021-11-17T10:38:04Z
dc.date.issued2020
dc.identifier.citationStanisław Goldstein, Adam Paszkiewicz, Linear combination of projections in von Neumann factors, Journal of Mathematical Analysis and Applications, Volume 489, Issue 1, 2020, 124135, ISSN 0022-247X, https://doi.org/10.1016/j.jmaa.2020.124135.pl_PL
dc.identifier.issn0022-247X
dc.identifier.urihttp://hdl.handle.net/11089/39789
dc.description.abstractIt is shown that any self-adjoint operator in a finite discrete or infinite von Neumann factor can be written as a real linear combination of 4 projections. On the other hand, in any type II1 algebra and in any type II∞ factor there exists a self-adjoint operator that is not a linear combination of 3 projections.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Naturepl_PL
dc.relation.ispartofseriesJournal of Mathematical Analysis and Applications;489
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectProjectionpl_PL
dc.subjectLinear combinationpl_PL
dc.subjectFactorpl_PL
dc.titleLinear combination of projections in von Neumann factorspl_PL
dc.typeArticlepl_PL
dc.page.number17pl_PL
dc.contributor.authorAffiliationFaculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Polandpl_PL
dc.contributor.authorAffiliationFaculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Polandpl_PL
dc.referencesB. Blackadar Operator Algebras: Theory of ⁎ -Algebras and von Neumann Algebras, Operator Algebras and Non-commutative Geometry, III Encyclopaedia of Mathematical Sciences, vol. 122, Springer-Verlag, Berlin (2006)pl_PL
dc.referencesThierry Fack, Hideki Kosaki Generalized s-numbers of τ-measurable operators Pac. J. Math., 123 (2) (1986), pp. 269-300pl_PL
dc.referencesPeter A. Fillmore Sums of operators with square zero Acta Sci. Math. (Szeged), 28 (1967), pp. 285-288pl_PL
dc.referencesPeter A. Fillmore On sums of projections J. Funct. Anal., 4 (1969), pp. 146-152pl_PL
dc.referencesStanisław Goldstein, Adam Paszkiewicz Linear combinations of projections in von Neumann algebras Proc. Am. Math. Soc., 116 (1) (1992), pp. 175-183pl_PL
dc.referencesP.R. Halmos Two subspaces Trans. Am. Math. Soc., 144 (1969), pp. 381-389pl_PL
dc.referencesHerbert Halpern, Victor Kaftal, Ping Wong Ng, Shuang Zhang Finite sums of projections in von Neumann algebras Trans. Am. Math. Soc., 365 (5) (2013), pp. 2409-2445pl_PL
dc.referencesRichard V. Kadison, John R. Ringrose Fundamentals of the Theory of Operator Algebras. Vol. II: Advanced Theory Pure and Applied Mathematics, vol. 100, Academic Press, Inc., Orlando, FL (1986)pl_PL
dc.referencesVictor Kaftal, PingWong Ng, Shuang Zhang Positive combinations of projections in von Neumann algebras and purely infinite simple C⁎-algebras Sci. China Math., 54 (11) (2011), pp. 2383-2393pl_PL
dc.referencesVictor Kaftal, P.W. Ng, Shuang Zhang Commutators and linear spans of projections in certain finite C*-algebras J. Funct. Anal., 266 (4) (2014), pp. 1883-1912pl_PL
dc.referencesKenneth Kunen Set Theory Studies in Logic (London), vol. 34, College Publications, London (2011)pl_PL
dc.referencesYoshihiro Nakamura Any Hermitian matrix is a linear combination of four projections Linear Algebra Appl., 61 (1984), pp. 133-139pl_PL
dc.referencesKatsuyoshi Nishio The structure of a real linear combination of two projections Linear Algebra Appl., 66 (1985), pp. 169-176pl_PL
dc.referencesAdam Paszkiewicz, Self-adjoint operators as a real linear span of 4 projections, unpublished.pl_PL
dc.referencesAdam Paszkiewicz Any selfadjoint operator is a finite linear combination of projectors Bull. Acad. Pol. Sci., Sér. Sci. Math., 28 (7–8) (1981), pp. 337-345pl_PL
dc.referencesCarl Pearcy, David Topping Sums of small numbers of idempotents Mich. Math. J., 14 (1967), pp. 453-465pl_PL
dc.referencesViacheslav Rabanovich Every bounded self-adjoint operators is a real linear combination of 4 orthoprojections arXiv:1608.04445 [math.OA]pl_PL
dc.referencesMasamichi Takesaki Theory of Operator Algebras. I Springer-Verlag, New York-Heidelberg (1979)pl_PL
dc.referencesJ. Tomiyama Generalized dimension function for w⁎ -algebras of infinite type Tohoku Math. J., 2 (10) (1958), pp. 121-129pl_PL
dc.contributor.authorEmailstanislaw.goldstein@wmii.uni.lodz.plpl_PL
dc.contributor.authorEmailadam.paszkiewicz@wmii.uni.lodz.plpl_PL
dc.identifier.doi10.1016/j.jmaa.2020.124135
dc.relation.volume1pl_PL
dc.disciplinematematykapl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe