Pokaż uproszczony rekord

dc.contributor.authorPytel, Krzysztof
dc.contributor.authorGłas, Dariusz
dc.contributor.authorSzadkowski, Zbigniew
dc.contributor.editorRosa, Joao Luis G.
dc.date.accessioned2021-11-04T10:28:35Z
dc.date.available2021-11-04T10:28:35Z
dc.date.issued2016
dc.identifier.citationSzadkowski Z., Głas D., Pytel K., Artificial Neural Network as a FPGA Trigger for a Detection of Neutrino-Induced Air Showers [in:] Artificial Neural Networks - Models and Applications, ed. by Joao Luis G. Rosa, 2016, pp. 141-161, DOI: 10.5772/63110.pl_PL
dc.identifier.isbn978-953-51-2705-5
dc.identifier.urihttp://hdl.handle.net/11089/39663
dc.description.abstractNeutrinos play a fundamental role in the understanding of the origin of ultrahigh-energy cosmic rays (UHECR). They interact through charged and neutral currents in the atmosphere generating extensive air showers. However, the very low rate of events potentially generated by neutrinos is a significant challenge for detection techniques and requires both sophisticated algorithms and high-resolution hardware. We developed the FPGA trigger which is generated by a neural network. The algorithm can recognize various waveform types. It has been developed and tested on ADC traces of the Pierre Auger surface detectors. We developed the algorithm of artificial neural network on a MATLAB platform. Trained network that we implemented into the largest Cyclone V E FPGA was used for the prototype of the front-end board for the AugerPrime. We tested several variants, and the Levenberg–Marquardt algorithm (trainlm) was the most efficient. The network was trained: (a) to recognize ‘old’ very inclined showers (real Auger data were used as patterns for both positive and negative markers: for reconstructed inclined showers and for triggered by time over threshold (ToT), respectively, (b) to recognize ‘neutrino-induced showers’. Here, we used simulated data for positive markers and vertical real showers for negative ones.pl_PL
dc.description.sponsorshipThis work is supported by the National Science Centre (Poland) under NCN Grant No. 2013/08/ M/ST9/00322. The authors would like to thank the Pierre Auger Collaboration for an opportunity of using the CORSIKA and offline simulation packages.pl_PL
dc.language.isoenpl_PL
dc.publisherIntechOpenpl_PL
dc.relation.ispartofArtificial Neural Networks - Models and Applications;6
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectFPGApl_PL
dc.subjecttriggerpl_PL
dc.subjectcosmic rayspl_PL
dc.subjectdetectionpl_PL
dc.subjectneural networkpl_PL
dc.subjectneutrinopl_PL
dc.subjectinclined showerspl_PL
dc.subjectPierre Auger Observatorypl_PL
dc.titleArtificial Neural Network as a FPGA Trigger for a Detection of Neutrino-Induced Air Showerspl_PL
dc.typeBook chapterpl_PL
dc.page.number141-161pl_PL
dc.contributor.authorAffiliationUniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanejpl_PL
dc.contributor.authorAffiliationUniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanejpl_PL
dc.contributor.authorAffiliationUniwersytet Łódzki, Wydział Fizyki i Informatyki Stosowanejpl_PL
dc.identifier.eisbn978-953-51-4175-4
dc.referencesM. Nagano, A. Watson. Observations and implications of the ultrahigh-energy cosmic rays. Rev. Mod. Phys. 2000;72(3):689–732. doi:10.1103/RevModPhys.72.689pl_PL
dc.referencesV. S. Berezinsky, A. Y. Smirnov. Cosmic neutrinos of ultrahigh energies and detection possibility. Astrophys. Space Sci. 1975;32(2):461482. doi:10.1007/BF00643157[2]pl_PL
dc.referencesF. Halzen, D. Hooper. High-energy neutrino astronomy: the cosmic ray connection. Rep. Progr. Phys. 2002;65(7):1025. doi:10.1088/0034-4885/65/7/201pl_PL
dc.referencesJ. K. Becker. High-energy neutrinos in the context of multi-messenger astrophysics. Phys. Rep. 2008;458(4–5):173246. doi:10.1016/j.physrep.2007.10.006pl_PL
dc.referencesP. Bhattacharjee, G. Sigl. Origin and propagation of extremely high-energy cosmic rays. Phys. Rep. 2000;327(3–4):109–247. doi:10.1016/S0370-1573(99)00101-5pl_PL
dc.referencesJ. Abraham et al. [Pierre Auger Collaboration]. Upper limit on the cosmic-ray photon fraction at EeV energies from the Pierre Auger Observatory. Astropart. Phys. 2009;31:399–406. doi:10.1016/j.astropartphys.2009.04.003pl_PL
dc.referencesJ. Abraham et al. [Pierre Auger Collaboration]. Properties and performance of the prototype instrument for the Pierre Auger Observatory. Nucl. Instrum. Methods. 2004;A523(1–2):5095. doi:10.1016/j.nima.2003.12.012pl_PL
dc.referencesJ. Abraham et al. [Pierre Auger Collaboration]. Observation of the suppression of the flux of cosmic rays above 4 × 1019 eV. Phys. Rev. Lett. 2008;101(6):061101. doi:10.1103/ PhysRevLett.101.061101pl_PL
dc.referencesK. Greisen. End to the cosmic-ray spectrum. Phys. Rev. Lett. 1966;16:748–750. [9] doi: 10.1103/PhysRevLett.16.748pl_PL
dc.referencesG. T. Zatsepin, V. A. Kuzmin. Upper limit of the spectrum of cosmic rays. Pisma v Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki. 1966;4:114. WOS:A19668298400011pl_PL
dc.referencesR. U. Abbasi et al. [Hi-Res Fly’s Eye Collaboration]. First observation of the Greisen– Zatsepin–Kuzmin suppression. Phys. Rev. Lett. 2008;100(10):101101. [11] doi:10.1103/ PhysRevLett.100.101101pl_PL
dc.referencesK. S. Capelle, J. W. Cronin, G. Parente, E. Zas. On the detection of ultra high energy neutrinos with the Auger Observatory. Astropart. Phys. 1998;8(4):321328. [12] doi: 10.1016/S0927-6505(97)00059-5pl_PL
dc.referencesX. Bertou, P. Billoir, O. Deligny, C. Lachaud, A. Letessier-Selvon. Tau neutrinos in the auger observatory: a new window to UHECR sources. Astropart. Phys. 2002;17(2): 183193. doi:10.1016/S0927-6505(01)00147-5pl_PL
dc.referencesJ. Abraham et al. [Pierre Auger Collaboration]. Trigger and aperture of the surface detector array of the Pierre Auger Observatory. Nucl. Instrum. Methods. 2010;A613:29– 39. doi:10.1016/j.nima.2009.11.018pl_PL
dc.referencesK. Kotera, D. Allard, A. V. Olinto. Cosmogenic neutrinos: parameter space and detectability from PeV to ZeV. JCAP. 2010;20(10):013. doi: 10.1088/1475-7516/2010/10/013pl_PL
dc.referencesE. Zas. Neutrino detection with inclined air showers. New J. Phys. 2005;7:130. doi: 10.1088/1367-2630/7/1/130pl_PL
dc.referencesZ. Szadkowski, K. Pytel. Artificial neural network as a FPGA trigger for a detection of very inclined air showers. IEEE Trans. Nucl. Sci. 2015;62(3):1002–1009. doi:10.1109/TNS. 2015.2421412pl_PL
dc.referencesZ. Szadkowski. Optimization of the detection of very inclined showers using a spectral DCT trigger in arrays of surface detectors. IEEE Trans. Nucl. Sci. 2013;60(5):3647–3653. doi:10.1109/TNS.2013.2280639pl_PL
dc.contributor.authorEmailzszadkow@kfd2.phys.uni.lodz.plpl_PL
dc.identifier.doi10.5772/63110
dc.disciplinenauki fizycznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe