Show simple item record

dc.contributor.authorBuchcic, Aleksandra
dc.contributor.authorZawisza, Anna
dc.contributor.authorLeśniak, Stanisław
dc.contributor.authorRachwalski, Michał
dc.date.accessioned2021-10-26T08:30:09Z
dc.date.available2021-10-26T08:30:09Z
dc.date.issued2020
dc.identifier.citationBuchcic, A.; Zawisza, A.; Leśniak, S.; Rachwalski, M. Asymmetric Friedel–Crafts Alkylation of Indoles Catalyzed by Chiral Aziridine-Phosphines. Catalysts 2020, 10, 971. https://doi.org/10.3390/catal10090971pl_PL
dc.identifier.issn2073-4344
dc.identifier.urihttp://hdl.handle.net/11089/39553
dc.description.abstractOver the course of the present studies, a series of optically pure phosphines functionalized by chiral aziridines was synthesized in reasonable/good chemical yields. Their catalytic activity was checked in the enantioselective Friedel–Crafts alkylation of indoles by β-nitrostyrene in the presence of a copper(I) trifluoromethanesulfonate benzene complex. The corresponding Friedel–Crafts products were achieved efficiently in terms of chemical yield and enantioselectivity (up to 85% in some cases).pl_PL
dc.description.sponsorshipThis research was funded by the National Science Centre (NCN) (Grant No. 2016/21/B/ST5/00421 for M.R.).pl_PL
dc.language.isoenpl_PL
dc.publisherMDPIpl_PL
dc.relation.ispartofseriesCatalysts;10(9)
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectasymmetric transformationspl_PL
dc.subjectchiral aziridinyl-phosphinespl_PL
dc.subjectenantioselective Friedel–Crafts alkylationpl_PL
dc.subjectstereoselectivitypl_PL
dc.titleAsymmetric Friedel–Crafts Alkylation of Indoles Catalyzed by Chiral Aziridine-Phosphinespl_PL
dc.typeArticlepl_PL
dc.page.number10pl_PL
dc.contributor.authorAffiliationDepartment of Organic and Applied Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Organic and Applied Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Organic and Applied Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Organic and Applied Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Polandpl_PL
dc.referencesDa Gama Oliveira, V.; do Carmo Cardoso, M.F.; da Silva Magalhães Forezi, L. Organocatalysis: A brief overview on its evolution and application. Catalysts 2018, 8, 605.pl_PL
dc.referencesPellissier, H. Asymmetric organocatalysis. Tetrahedron 2007, 63, 9267–9331.pl_PL
dc.referencesKagan, H.B.; Gopalaiah, K. Early history of asymmetric synthesis: Who are the scientists who set up the basic principles and the first experiments. New J. Chem. 2011, 35, 1933–1937.pl_PL
dc.referencesLi, L.; Chen, Z.; Zhang, X.; Jia, Y. Divergent strategy in natural product total synthesis. Chem. Rev. 2018, 118, 3752–3832.pl_PL
dc.referencesShimokawa, J. Divergent strategy in natural product total synthesis. Tetrahedron Lett. 2014, 55, 6156–6162.pl_PL
dc.referencesKrautwald, S.; Carreira, E.M. Stereodivergence in asymmetric catalysis. J. Am. Chem. Soc. 2017, 139, 5627–5639.pl_PL
dc.referencesChoi, J.; Fu, G.C. Catalytic asymmetric synthesis of secondary nitriles via stereoconvergent Negishi arylations and alkenylations of racemic -bromonitriles. J. Am. Chem. Soc. 2012, 134, 9102–9105.pl_PL
dc.referencesKalek, M.; Fu, G.C. Phosphine-catalyzed doubly stereoconvergent -additions of racemic heterocycles to racemic allenoates: The catalytic enantioselective synthesis of protected , -disubstituted -amino acid derivatives. J. Am. Chem. Soc. 2015, 137, 9438–9442.pl_PL
dc.referencesPark, J.K.; Lackey, H.H.; Ondrusek, B.A.; McQuade, D.T. Stereoconvergent synthesis of chiral allylboronates from an E/Z mixture of allylic aryl ethers using a 6-NHC-Cu(I) catalyst. J. Am. Chem. Soc. 2011, 133, 2410–2413.pl_PL
dc.referencesPoulsen, T.B.; Jørgensen, K.A. Catalytic asymmetric Friedel-Crafts alkylation reactions—Copper showed the way. Chem. Rev. 2008, 108, 2903–2915.pl_PL
dc.referencesSingh, P.K.; Bisai, A.; Singh, V.K. Enantioselective Friedel-Crafts alkylation of indoles with nitroalkanes catalyzed by a bis(oxazoline)-Cu(II) complex. Tetrahedron Lett. 2007, 48, 1127–1129.pl_PL
dc.referencesLi, W. Chiral bis(oxazolinyl)thiophenes for enantioselective Cu(II)-catalyzed Friedel-Crafts alkylation of indole derivatives with nitroalkenes. Catal. Lett. 2014, 144, 943–948.pl_PL
dc.referencesLiu, T.-Y.; Cui, H.-L.; Chai, Q.; Long, J.; Li, B.-J.; Wu, Y.; Ding, L.-S.; Chen, Y.-C. Organocatalytic asymmetric Friedel-Crafts alkylation/cascade reactions of naphthols and nitroolefins. Chem. Commun. 2007, 2228–2230.pl_PL
dc.referencesWang, Y.-Q.; Song, J.; Hong, R.; Li, H.; Deng, L. Asymmetric Friedel-Crafts reaction of indoles with imines by an organic catalyst. J. Am. Chem. Soc. 2006, 128, 8156–8157.pl_PL
dc.referencesÖzdemir, H.S.; ¸Sahin, E.; Çakici, M.; Kiliç, H. Asymmetric Friedel-Crafts alkylation of pyrrole with nitroalkenes catalyzed by a copper complex of a bisphenol A-derived Schi base. Tetrahedron 2015, 71, 2882–2890.pl_PL
dc.referencesKim, H.Y.; Kim, S.; Oh, K. Orthogonal enantioselectivity approaches using homogeneous and heterogeneous catalyst systems: Friedel-Crafts alkylation of indole. Angew. Chem. Int. Ed. 2010, 49, 4476–4478.pl_PL
dc.referencesLiu, J.; Gong, L.; Meggers, E. Asymmetric Friedel-Crafts alkylation of indoles with 2-nitro-3-arylacrylates catalyzed by a metal-templated hydrogen bonding catalyst. Tetrahedron Lett. 2015, 56, 4653–4656.pl_PL
dc.referencesKaushik, N.K.; Kaushik, N.; Attri, P.; Kumar, N.; Kim, C.H.; Verma, A.K.; Choi, E.H. Biomedical importance of indoles. Molecules 2013, 18, 6620–6662.pl_PL
dc.referencesSakamoto, T.; Itoh, J.; Mori, K.; Akiyama, T. Chiral Brønsted acid catalyzed Friedel-Crafts alkylation reaction of indoles with , -unsaturated ketones: Short access to optically active 2- and 3-substituted indole derivatives. Org. Biomol. Chem. 2010, 8, 5448–5454.pl_PL
dc.referencesAli, S.; Wisal, A.; Tahir, M.N.; Ali, A.; Hameed, S.; Ahmed, M.N. One-pot synthesis, crystal structure and antimicrobial activity of 6-benzyl-11-(p-tolyl)-6H-indolo[2,3-b]quinoline. J. Mol. Struct. 2020, 1210, 128035.pl_PL
dc.referencesSansinenea, E.; Martínez, E.F.; Ortiz, A. Organocatalytic synthesis of chiral spirooxindoles with quaternary stereogenic centers. Eur. J. Org. Chem. 2020.pl_PL
dc.referencesHong, S.K.; Park, W.; Park, Y.S. Asymmetric synthesis of 4-aryl dihydroisoquinolin-3-ones and 2-aryl morpholin-3-ones using AgOTf-activated -bromo arylacetate. Tetrahedron 2020, 76, 130841.pl_PL
dc.referencesWang, Z.; Zu, L. Organocatalytic enantioselective direct alkylation of phloroglucinol derivatives: Asymmetric total synthesis of (+)-aflatoxin B2. Chem. Commun. 2019, 5171–5174.pl_PL
dc.referencesYang, H.; Tang, W. E cient enantioselective syntheses of chiral natural products facilitated by ligand design. Chem. Rec. 2020, 20, 23–40.pl_PL
dc.referencesKhatri, H.R.; Carney, N.; Rutkoski, R.; Bhattarai, B.; Nagorny, P. Recent progress in steroid synthesis triggered by the emergence of new catalytic methods. Eur. J. Org. Chem. 2020, 7, 755–776.pl_PL
dc.referencesZhao, Y.-L.; Lou, Q.-X.; Wang, L.-S.; Hu, W.-H.; Zhao, J.-L. Organocatalytic Friedel-Crafts alkylation/Lactonization reaction of naphthols with 3-trifluoroethylidene oxindoles: The asymmetric synthesis of dihydrocoumarins. Angew. Chem. Int. Ed. 2017, 56, 338–342.pl_PL
dc.referencesRoemer, M.; Wild, D.A.; Sobolev, A.N.; Skelton, B.W.; Nealon, G.L.; Piggott, M.J.; Koutsantonis, G.A. Carbon-rich trinuclear octamethylferrocenophanes. Inorg. Chem. 2019, 58, 3789–3799.pl_PL
dc.referencesDo˘gan, Ö.; Ça˘ gli, E. PFAM catalyzed enantioselective diethylzinc addition to imines. Turk. J. Chem. 2015, 39, 290–296.pl_PL
dc.referencesDogan, Ö.; Tan, D. Enantioselective direct aldol reactions promoted by phosphine oxide aziridinyl phosphonate organocatalysts. Tetrahedron Asymmetry 2015, 26, 1348–1353.pl_PL
dc.referencesEröksüz, S.; Dogan, Ö.; Garner, P.P. A new chiral phosphine oxide ligand for enantioselective 1,3-dipolar cycloaddition reactions of azomethine ylides. Tetrahedron Asymmetry 2010, 21, 2535–2541.pl_PL
dc.referencesDogan, Ö.; Isci, M.; Aygun, M. New phosphine oxide aziridinyl phosphonates as chiral Lewis bases for the Abramov-type phosphonylation of aldehydes. Tetrahedron Asymmetry 2013, 24, 562–567.pl_PL
dc.referencesDogan, Ö.; Bulut, A.; Tecimer, M.A. Chiral phosphine oxide aziridinyl phosphonate as a Lewis base catalyst for enantioselective allylsilane addition to aldehydes. Tetrahedron Asymmetry 2015, 26, 966–969.pl_PL
dc.referencesWujkowska, Z.; Zawisza, A.; Le´sniak, S.; Rachwalski, M. Phosphinoyl-aziridines as a new class of chiral catalysts for enantioselective Michael addition. Tetrahedron 2019, 75, 230–235.pl_PL
dc.referencesBuchcic, A.; Zawisza, A.; Le´sniak, S.; Adamczyk, J.; Pieczonka, A.M.; Rachwalski, M. Enantioselective Mannich reaction promoted by chiral phosphinoyl-aziridines. Catalysts 2019, 9, 837.pl_PL
dc.referencesLe´sniak, S.; Rachwalski, M.; Jarzy ´ nski, S.; Obijalska, E. Lactic acid derived aziridinyl alcohols as highly e ective catalysts for asymmetric additions of an organozinc species to aldehydes. Tetrahedron Asymmetry 2013, 24, 1336–1340.pl_PL
dc.referencesPieczonka, A.M.; Le´sniak, S.; Rachwalski, M. Direct asymmetric aldol condensation catalyzed by aziridine semicarbazide zinc(II) complexes. Tetrahedron Lett. 2014, 55, 2373–2375.pl_PL
dc.referencesPieczonka, A.M.; Marciniak, L.; Rachwalski, M.; Le´sniak, S. Enantiodivergent aldol condensation in the presence of aziridine/acid/water systems. Symmetry 2020, 12, 930.pl_PL
dc.referencesCoumbe, T.; Lawrence, N.J.; Muhammad, F. Titanium (IV) catalysis in the reduction of phosphine oxides. Tetrahedron Lett. 1994, 35, 625–628.pl_PL
dc.referencesZhang, T.-X.; Zhang, W.-X.; Luo, M.-M. Metal-free reduction of tertiary phosphine oxides with Hantzsch ester. Chin. Chem. Lett. 2014, 25, 176–178.pl_PL
dc.referencesBusacca, C.A.; Raju, R.; Grinberg, N.; Haddad, N.; James-Jones, P.; Lee, H.; Lorenz, J.C.; Saha, A.; Senanayake, C.H. Reduction of tertiary phosphine oxides with DIBAL-H. J. Org. Chem. 2008, 73, 1524–1531.pl_PL
dc.referencesProvis-Evans, C.B.; Emanuelsson, E.A.C.; Webster, R.L. Rapid metal-free formation of free phosphines from phosphine oxides. Adv. Synth. Catal. 2018, 360, 3999–4004.pl_PL
dc.referencesSowa, S.; Stankeviˇc, M.; Szmigielska, A.; Małuszy´ nska, H.; Kozioł, A.E.; Pietrusiewicz, K.M. Reduction of functionalized tertiary phosphine oxides with BH3. J. Org. Chem. 2015, 80, 1672–1688.pl_PL
dc.referencesZhao, W.; Sun, J. Triflimide (HNTf2) in organic synthesis. Chem. Rev. 2018, 118, 10349–10392.pl_PL
dc.referencesShi, H.; Herron, A.N.; Shao, Y.; Shao, Q.; Yu, J.-Q. Enantioselective remote meta-C–H arylation and alkylation via a chiral transient mediator. Nature 2018, 558, 581–586.pl_PL
dc.identifier.doi10.3390/catal10090971
dc.relation.volume971pl_PL
dc.disciplinenauki chemicznepl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa 4.0 Międzynarodowe