dc.contributor.author | Jazdzewska, Anna | |
dc.contributor.author | Mohrbeck, Inga | |
dc.contributor.author | Arbizu, Pedro Martinez | |
dc.contributor.author | Horton, Tammy | |
dc.date.accessioned | 2021-10-18T17:22:38Z | |
dc.date.available | 2021-10-18T17:22:38Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Mohrbeck, I., Horton, T., Jażdżewska, A.M. et al. DNA barcoding and cryptic diversity of deep-sea scavenging amphipods in the Clarion-Clipperton Zone (Eastern Equatorial Pacific). Mar. Biodivers. 51, 26 (2021). https://doi.org/10.1007/s12526-021-01170-3 | pl_PL |
dc.identifier.issn | 1867-1616 | |
dc.identifier.uri | http://hdl.handle.net/11089/39401 | |
dc.description.abstract | The Clarion-Clipperton Zone (CCZ), located in the abyssal equatorial Pacific, has been subject to intensive international exploration for polymetallic nodule mining over the last four decades. Many studies have investigated the potential effects of mining on deep-sea ecosystems and highlighted the importance of defining environmental baseline conditions occurring at potential mining sites. However, current information on biodiversity and species distributions in the CCZ is still scarce and hampers the ability to effectively manage and reduce the potential impacts of mining activities. As part of the regulatory regimes adopted by the International Seabed Authority, concession holders are required to conduct an environmental impact assessment and gather baseline data on biodiversity and community structure in relation to their license areas. In the present study, we used an integrative molecular and morphological approach to assess species richness and genetic variation of deep-sea scavenging amphipods collected in two nodule-mining exploration areas (UK-1 and OMS-1 areas) and one Area of Particular Environmental Interest (APEI-6) in the eastern part of the CCZ. We analyzed the DNA sequences of the cytochrome c oxidase subunit I gene of 645 specimens belonging to ten distinct morphospecies. Molecular data uncover potential cryptic diversity in two investigated species, morphologically identified as Paralicella caperesca Shulenberger & Barnard, 1976 and Valettietta cf. anacantha (Birstein & Vinogradov, 1963). Our study highlights the importance of using molecular tools in conjunction with traditional morphological methods for modern biodiversity assessment studies, particularly to evaluate morphologically similar individuals and incomplete specimens. The results of this study can help determine species identity and ranges, information which can feed into environmental management. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Springer Nature | pl_PL |
dc.relation.ispartofseries | Marine Biodiversity;51:26 | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Paralicella caperesca | pl_PL |
dc.subject | Valettietta cf. anacantha | pl_PL |
dc.subject | Cryptic species | pl_PL |
dc.subject | Integrative taxonomy | pl_PL |
dc.subject | Mitochondrial COI | pl_PL |
dc.subject | Polymetallic nodule fields | pl_PL |
dc.subject | Deep sea | pl_PL |
dc.subject | ABYSSLINE | pl_PL |
dc.title | DNA barcoding and cryptic diversity of deep-sea scavenging amphipods in the Clarion-Clipperton Zone (Eastern Equatorial Pacific) | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 15 | pl_PL |
dc.contributor.authorAffiliation | Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90–237 Lodz, Poland | pl_PL |
dc.contributor.authorAffiliation | German Center for Marine Biodiversity Research (DZMB), Senckenberg am Meer, Südstrand 44, 26382 Wilhelmshaven, Germany | pl_PL |
dc.contributor.authorAffiliation | German Center for Marine Biodiversity Research (DZMB), Senckenberg am Meer, Südstrand 44, 26382 Wilhelmshaven, Germany | pl_PL |
dc.contributor.authorAffiliation | National Oceanography Centre, European Way, Southampton, SO143ZH, UK | pl_PL |
dc.identifier.eissn | 1867-1624 | |
dc.references | Alva V, Nam SZ, Söding J, Lupas AN (2016) The MPI bioinformatics Toolkit as an integrative platform for advanced protein sequence and structure analysis. Nucleic Acids Research, 44 (Web Server issue), W410–W415. https://doi.org/10.1093/nar/gkw348 | pl_PL |
dc.references | Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 16:37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036 | pl_PL |
dc.references | Barnard JL, Shulenberger E (1976) Clarification of the abyssal amphipod, Paralicella tenuipes Chevreux. Crustaceana:267–274. https://doi.org/10.1163/156854076X00053 | pl_PL |
dc.references | Bickford D, Lohmann DJ, Sodhi NS, Ng PKL, Meier R, Winkler K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22(3):148–155. https://doi.org/10.1016/j.tree.2006.11.004 | pl_PL |
dc.references | Birstein YA, Vinogradov ME (1960) Pelagic Gammaridea of the tropical part of the Pacific Ocean. Trudy Instituta Okeanologii Akademi nauk SSSR 34:165–241 [in Russian] | pl_PL |
dc.references | Birstein YA, Vinogradov ME (1963) The deep-sea pelagic amphipods of the Philippine Trench. Trudy Instituta Okeanologii Akademi nauk SSSR 71:81–93 [in Russian] | pl_PL |
dc.references | Blankenship LE, Levin LA (2007) Extreme food webs: Foraging strategies and diets of scavenging amphipods from the ocean’s deepest 5 kilometers. Limnol Oceanogr 52(4):1685–1697. https://doi.org/10.4319/lo.2007.52.4.1685 | pl_PL |
dc.references | Chevreux E (1903) Campagnes scientifiques de S.A. le Prince Albert Ier de Monaco. Note preliminaire sur les amphipodes de la famille des Lysianassidae recueillis par la “Princesse Alice” dans les eaux profondes de l’Atlantique et de la Mediterranée. Bulletin de la Société Zoologique de France (28):81–97 | pl_PL |
dc.references | Chevreux E (1908) Diagnoses d’amphipodes nouveaux provenant des campagnes de la “Princesse-Alice” dans l’ Atlantique nord. Bulletin de l’Institut Océanographique de Monaco 117:1–13 | pl_PL |
dc.references | Christiansen B, Diel-Christiansen S (1993) Respiration of lysianassoid amphipods in a subarctic fjord and some implications on their feeding ecology. Sarsia 78:9–15. https://doi.org/10.1080/00364827.1993.10413516 | pl_PL |
dc.references | Christodoulou M, O’Hara T, Hugall AF, Khodami S, Rodrigues CF, Hilario A, Vink A, Martínez Arbizu P (2020) Unexpected high abyssal ophiuroid diversity in polymetallic nodule fields of the northeast Pacific Ocean and implications for conservation. Biogeosciences 17(7):1845–1876. https://doi.org/10.5194/bg-17-1845-2020 | pl_PL |
dc.references | Clark AL, Cook Clark JLM, Pintz S (2013) Towards the development of a regulatory framework for polymetallic nodule exploitation in the area. National Library of Jamaica Cataloguing: International Seabed Authority. 81 pp. | pl_PL |
dc.references | d’Udekem d'Acoz C, Havermans C (2015) Contribution to the systematics of the genus Eurythenes S.I. Smith in Scudder, 1882 (Crustacea: Amphipoda: Lysianassoidea: Eurytheneidae). Zootaxa. 3971(1):1–80. https://doi.org/10.11646/zootaxa.3971.1.1 | pl_PL |
dc.references | Duffy GA, Horton T, Billett DSM (2012) Deep-sea scavenging amphipod assemblages from the submarine canyons of the Western Iberian Peninsula. Biogeosciences 9:4861–4869. https://doi.org/10.5194/bg-9-4861-2012 | pl_PL |
dc.references | Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340 | pl_PL |
dc.references | Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791. https://doi.org/10.2307/2408678 | pl_PL |
dc.references | Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11:839–850. https://doi.org/10.1046/j.1365-294x.2002.01485.x | pl_PL |
dc.references | Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3(5):294–299 | pl_PL |
dc.references | Fujii T, Kilgallen NM, Rowden AA, Jamieson AJ (2013) Deep-sea amphipod community structure across abyssal to hadal depths in the Peru-Chile and Kermadec trenches. Mar Ecol Prog Ser 492:125–138. https://doi.org/10.3354/meps10489 | pl_PL |
dc.references | Halbach P, Fellerer R (1980) The metallic minerals of the Pacific Seafloor. GeoJournal 4:407–422 | pl_PL |
dc.references | Halbach P, Özkara M, Hense J (1975) The influence of metal content on the physical and mineralogical properties of pelagic manganese nodules. Miner Deposita 10:397–411 | pl_PL |
dc.references | Havermans C (2016) Have we so far only seen the tip of the iceberg? Exploring species diversity and distribution of the giant amphipod Eurythenes. Biodiversity 17:12–25. https://doi.org/10.1080/14888386.2016.1172257 | pl_PL |
dc.references | Havermans C, Nagy ZT, Sonet G, De Broyer C, Martin P (2011) DNA barcoding reveals new insights into the diversity of Antarctic species of Orchomene sensu lato (Crustacea: Amphipoda: Lysianassoidea) Deep-Sea Res Pt II 58(5):230–241. https://doi.org/10.1016/j.dsr2.2010.09.028 | pl_PL |
dc.references | Havermans C, Sonet G, d’Udekem d’Acoz C, Nagy ZT, Martin P, Brix S, Riehl T, Argawal S, Held C (2013) Genetic and morphological divergences in the cosmopolitan deep-sea amphipod Eurythenes gryllus reveal a diverse abyss and a bipolar species. PLOS ONE 8(9):e74218. https://doi.org/10.1371/journal.pone.0074218 | pl_PL |
dc.references | Haye PA, Segovia NI, Muñoz-Herrera NC, Gálvez FE, Martínez A, Meynard A, Pardo-Gandarillas MC, Poulin E, Fageron S (2014) Phylogeographic structure in benthic marine invertebrates of the Southeast Pacific coast of Chile with differing dispersal potential. PLOS ONE 9(2):e88613. https://doi.org/10.1371/journal.pone.0088613 | pl_PL |
dc.references | Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc B–Biol Sci 270:313–321. https://doi.org/10.1098/rspb.2002.2218 | pl_PL |
dc.references | Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of Birds through DNA Barcodes. PLoS Biology 2(10):e312. https://doi.org/10.1371/journal.pbio.0020312 | pl_PL |
dc.references | Held C (2003) Molecular evidence for cryptic speciation within the widespread Antarctic crustacean Ceratoserolis trilobitoides (Crustacea, Isopoda). In: Huiskes AHL, Gieskes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Proceedings of the SCAR Biology Symposium Amsterdam. Antarctic Biology in a global context. Backhuys Publishers, Leiden, The Netherlands, pp 87–95 | pl_PL |
dc.references | Hessler RR, Ingram CL, Yayanos AA, Burnett BR (1978) Scavenging amphipods from the floor of the Philippine Trench. Deep-Sea Res 25:1029–1047. https://doi.org/10.1016/0146-6291(78)90585-4 | pl_PL |
dc.references | Horton T, Thurston M (2014) A revision of the bathyal & abyssal necrophage genus Cyclocaris Stebbing, 1888 (Crustacea:Amphipoda; Cyclocaridae) with the addition of two new species from the Atlantic Ocean. Zootaxa 3796(3):507–527. https://doi.org/10.11646/zootaxa.3796.3.6 | pl_PL |
dc.references | Horton T, Thurston M (2015) A revision of the genus Paracallisoma Chevreux, 1903 (Crustacea: Amphipoda: Scopelocheiridae: Paracallisominae) with a redescription of the type species of the genus Paracallisoma Chevreux, 1903, the description of two new genera and two new species from the Atlantic Ocean. Zootaxa 3995(1):91–132. https://doi.org/10.11646/zootaxa.3995.1.12 | pl_PL |
dc.references | Horton T, Thurston M, Duffy G (2013) Community composition of scavenging amphipods at bathyal depths on the mid-atlantic ridge. Deep-Sea Res Pt II 98:352–359. https://doi.org/10.1016/j.dsr2.2013.01.032 | pl_PL |
dc.references | Horton T, Lowry J, De Broyer C, Bellan-Santini D, Coleman CO, Corbari L, Costello MJ, Daneliya M, Dauvin J-C, Fišer C, Gasca R, Grabowski M, Guerra-García JM, Hendrycks E, Hughes L, Jaume D, Jazdzewski K, Kim Y-H, King R, Krapp-Schickel T, LeCroy S, Lörz A-N, Mamos T, Senna AR, Serejo C, Sket B, Souza-Filho JF, Tandberg AH, Thomas JD, Thurston M, Vader W, Väinölä R, Vonk R, White K, Zeidler W (2020a) World Amphipoda database. Accessed at http://www.marinespecies.org/amphipoda on 2020-07-24. doi:10.14284/368 | pl_PL |
dc.references | Horton T, Thurston MH, Vlierboom R, Gutteridge Z, Pebody CA, Gates AR, Bett BJ (2020b) Are abyssal scavenging amphipod assemblages linked to climate cycles? Progr Oceanogr 184. https://doi.org/10.1016/j.pocean.2020.102318 | pl_PL |
dc.references | Huang Y, Niu B, Gao Y, Fu L, Li W (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26:680–682. https://doi.org/10.1093/bioinformatics/btq003 | pl_PL |
dc.references | Ingram CL, Hessler RR (1983) Distribution and behavior of scavenging amphipods from the central North Pacific. Deep Sea Res A 30(7):683–706. https://doi.org/10.1016/0198-0149(83)90017-1 | pl_PL |
dc.references | ISA (2010) A geological model of polymetallic nodule deposits in the Clarion-Clipperton Fracture Zone. National Library of Jamaica Cataloguing: International Seabed Authority Technical Study No. 6. 211 pp. | pl_PL |
dc.references | ISA (2013a) Decision of the council of the international seabed authority relating to amendments to the regulations on prospecting and exploration for polymetallic nodules in the area and related matters. National Library of Jamaica Cataloguing: International Seabed Authority, Kingston, Jamaica. Vol. ISBA/19/C/17, 49 pp. | pl_PL |
dc.references | ISA (2013b) Recommendations for the guidance of contractors for the assessment of the possible environmental impacts arising from exploration for polymetallic nodules in the area. National Library of Jamaica Cataloguing: International Seabed Authority, Kingston, Jamaica. Vol. ISBA/19/LTC/8, 32 pp. | pl_PL |
dc.references | Jakiel A, Palero F, Błażewicz M (2019) Deep ocean seascape and Pseudotanaidae (Crustacea: Tanaidacea) diversity at the Clarion-Clipperton Fracture Zone. Sci Rep 9:17305. https://doi.org/10.1038/s41598-019-51434-z | pl_PL |
dc.references | Janssen A, Kaiser S, Meißner K, Brenke N, Menot L, Martínez Arbizu P (2015) A reverse taxonomic approach to assess macrofaunal distribution patterns in abyssal Pacific polymetallic nodule fields. PLoS One 10(2):e0117790. https://doi.org/10.1371/journal.pone.0117790 | pl_PL |
dc.references | Jones DOB, Simon-Lledo E, Amon DJ, Bett BJ, Caulle C, Clément L, Connelly DP, Dahlgren TG, Durden JM, Drazen JC, Felden J, Gates AR, Georgieva MN, Glover AG, Gooday AJ, Hollingsworth AL, Horton T, James RH, Jeffreys RM, Laguionie-Marchais C, Leitner AB, Lichtschlag A, Marsh L, Menendez A, Paterson GLJ, Peel K, Robert K, Schoening T, Shulga N, Smith CR, Taboada S, Thurnherr AM, Wiklund H, Young CR, Huvenne VAI (submitted) Environment, ecology, and potential effectiveness of an area protected from deep-sea mining (Clarion Clipperton Zone, abyssal Pacific) | pl_PL |
dc.references | Kamenskaya OE (1995) Gammaridean amphipods form the hadal trenches of the Pacific Ocean. Polskie Archiwum Hydrobiologii 42:327–334 | pl_PL |
dc.references | Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649. https://doi.org/10.1093/bioinformatics/bts199 | pl_PL |
dc.references | Kemppainen P, Panova M, Hollander J, Johannesson K (2009) Complete lack of mitochondrial divergence between two species of NE Atlantic marine intertidal gastropods. J Evol Biol 22:2000–2011. https://doi.org/10.1111/j.1420-9101.2009.01810.x | pl_PL |
dc.references | Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16(2):111–120. https://doi.org/10.1007/BF01731581 | pl_PL |
dc.references | Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874. https://doi.org/10.1093/molbev/msw054 | pl_PL |
dc.references | Leigh J, Bryant D (2015) POPART: full-feature software for haplotype network construction. Methods Ecol Evol 6:1110–1116. https://doi.org/10.1111/2041-210X.12410 | pl_PL |
dc.references | Leray M, Knowlton N (2015) DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. PNAS 112(7):2076–2081. https://doi.org/10.1073/pnas.1424997112 | pl_PL |
dc.references | Lincoln RJ, Thurston MH (1983) Valettietta, a new genus of deep-sea amphipod (Gammaridea : Lysianassidae) with descriptions of two new species from the North Atlantic Ocean. Bulletin of the British Museum (Natural History). Zoology 44(2):85–101 | pl_PL |
dc.references | Lodge M, Johnson D, Le Gurun G, Wengler M, Weaver P, Gunn V (2014) Seabed mining: international seabed authority environmental management plan for the Clarion–Clipperton Zone. A partnership approach. Mar Policy 49:66–72. https://doi.org/10.1016/j.marpol.2014.04.006 | pl_PL |
dc.references | Mamos T, Wattier R, Majda A, Sket B, Grabowski M (2014) Morphological vs. molecular delineation of taxa across montane regions in Europe: the case study of Gammarus balcanicus Schäferna, (Crustacea: Amphipoda). J Zool Syst Evol Res 52(3):237–248. https://doi.org/10.1111/jzs.12062 | pl_PL |
dc.references | Markmann M, Tautz D (2005) Reverse taxonomy: an approach towards determining the diversity of meiobenthic organisms based on ribosomal RNA signature sequences. Phil Trans R Soc B 360:1917–1924. https://doi.org/10.1098/rstb.2005.1723 | pl_PL |
dc.references | McClain CR, Hardy SM (2010) The dynamics of biogeographic ranges in the deep sea. Proc R Soc B–Biol Sci 277(1700):3533–3546. https://doi.org/10.1098/rspb.2010.1057 | pl_PL |
dc.references | Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLOS Biology 3(12):e422. https://doi.org/10.1371/journal.pbio.0030422 | pl_PL |
dc.references | Miljutin DM, Miljutina MA, Arbizu PM, Galéron J (2011) Deep-sea nematode assemblage has not recovered 26 years after experimental mining of polymetallic nodules (Clarion-Clipperton Fracture Zone, Tropical Eastern Pacific). Deep Sea Res Pt I 58:885–897. https://doi.org/10.1016/j.dsr.2011.06.003 | pl_PL |
dc.references | Milne Edwards H (1848) Sur un crustacé amphipode, remarquable par sa grande taille. Annales des Sciences Naturelles, Zoologie (Ser. 3) (9): 398. | pl_PL |
dc.references | Morgulis A, Coulouris G, Raytselis Y, Madden TL, Agarwala R, Schäffer AA (2008) Database indexing for production MegaBLAST searches. Bioinformatics 24(16):1757–1764. https://doi.org/10.1093/bioinformatics/btn322 | pl_PL |
dc.references | Patel T, Robert H, D'Udekem D'Acoz C, Martens K, De Mesel I, Degraer S, Schön I (2020) Biogeography and community structure of abyssal scavenging Amphipoda (Crustacea) in the Pacific Ocean. Biogeosciences 17:2731–2744. https://doi.org/10.5194/bg-17-2731-2020 | pl_PL |
dc.references | Plaisance L, Caley MJ, Brainard RE, Knowlton N (2011) The diversity of coral reefs: what are we missing? PLoS One 6(10):e25026. https://doi.org/10.1371/journal.pone.0025026 | pl_PL |
dc.references | Ratnasingham S, Hebert PDN (2007) BOLD: the barcode of life data systems. Mol Ecol Notes 7:355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x | pl_PL |
dc.references | Ratnasingham S, Hebert PDN (2013) A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS ONE 8:e66213. https://doi.org/10.1371/journal.pone.0066213 | pl_PL |
dc.references | Rex MA (2002) Biogeography of the deep-sea gastropod Palazzia planorbis (Dall, 1927): an uncommon form of rarity. Nautilus 116:36–38 | pl_PL |
dc.references | Ritchie H, Jamieson AJ, Piertney SB (2015) Phylogenetic relationships among hadal amphipods of the superfamily Lysianassoidea: implications for taxonomy and biogeography. Deep-Sea Research Pt I 105:119–131. https://doi.org/10.1016/j.dsr.2015.08.014 | pl_PL |
dc.references | Rolinski S, Segschneider J, Sundermann J (2001) Long-term propagation of tailings from deep-sea mining under variable conditions by means of numerical simulations. Deep-Sea Res Pt II 48:3469–3485. https://doi.org/10.1016/S0967-0645(01)00053-4 | pl_PL |
dc.references | Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454 | pl_PL |
dc.references | Sharma R, Nagender Nath B, Parthiban G, Jai Sankar S (2001) Sediment redistribution during simulated benthic disturbance and its implications on deep seabed mining. Deep-Sea Res. Pt II 48:3363–3380. https://doi.org/10.1016/S0967-0645(01)00046-7 | pl_PL |
dc.references | Shulenberger E, Barnard JL (1976) Amphipods from an abyssal trap set in the North Pacific Gyre. Crustaceana 31(3):241–258. https://doi.org/10.1163/156854076X00035 | pl_PL |
dc.references | Smith MA, Fisher BL, Hebert PDN (2005) DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philos T Roy Soc B 360:1825–1834. https://doi.org/10.1098/rstb.2005.1714 | pl_PL |
dc.references | Smith CR, Dahlgren TG, Drazen J, Glover AG, Gooday A, Kurras G, et al. (2013) Abyssal baseline study (ABYSSLINE) cruise report: abyssal baseline (AB01) – SRD UK-1 Site Oct 3 – 27, 2013 R/V Melville 13.8°N 116.6°W. Seafloor Investigations Report 2013-1304-051JSRDL-AB01: 1-160 | pl_PL |
dc.references | Stebbing TRR (1888) Report on the Amphipoda collected by H.M.S. Challenger during the years 1873-1876. Report on the Scientific Results of the Voyage of H.M.S. Challenger during the years 1873–76. Zoology. 29 (part 67): i-xxiv, 1-1737. | pl_PL |
dc.references | Stebbing TRR (1906) Amphipoda. I. Gammaridea. Das Tierreich. (21): 1–806. | pl_PL |
dc.references | Thiel H (2001) Evaluation of the environmental consequences of polymetallic nodule mining based on the results of the TUSCH Research Association. Deep-Sea Res Pt II 48:3433–3452. https://doi.org/10.1016/S0967-0645(01)00051-0 | pl_PL |
dc.references | Vanreusel A, Hilário A, Ribeiro P, Menot L, Martinez Arbizu P (2016) Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Sci Rep 6:26808. https://doi.org/10.1038/srep26808 | pl_PL |
dc.references | Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10(4):506–513 | pl_PL |
dc.references | Wedding L, Friedlander A, Kittinger J, Watling L, Gaines S, Bennet M, Hardy SM, Smith CR (2013) From principles to practice: a spatial approach to systematic conservation planning in the deep sea. Proc R Soc B–Biol Sci 280:20131684. https://doi.org/10.1098/rspb.2013.1684 | pl_PL |
dc.references | Wedding LM, Reiter SM, Smith CR, Gjerde KM, Kittinger JN, Friedlander AM, Gaines SD, Clark MR, Thurnherr AM, Hardy SM, Crowder LB (2015) Managing mining of the deep seabed. Science 349(6244):144–145. https://doi.org/10.1126/science.aac6647 | pl_PL |
dc.references | WoRMS Editorial Board (2020) World Register of Marine Species. Available from http://www.marinespecies.org at VLIZ. Accessed 2020-07-24. doi:10.14284/170 | pl_PL |
dc.references | Yoder M, Tandingan De Ley I, King IW, Mundo-Ocampo M, Mann J, Blaxter M, Poiras L, De Ley P (2006) DESS: a versatile solution for preserving morphology and extractable DNA of nematodes. Nematology 8:367–376. https://doi.org/10.1163/156854106778493448 | pl_PL |
dc.references | Zhang Z, Schwartz S, Wagner L, Webb M (2004) A greedy algorithm for aligning DNA sequences. J Comput Biol 7(1-2):203–214. https://doi.org/10.1089/10665270050081478 | pl_PL |
dc.contributor.authorEmail | anna.jazdzewska@biol.uni.lodz.pl | pl_PL |
dc.identifier.doi | https://doi.org/10.1007/s12526-021-01170-3 | |
dc.discipline | nauki biologiczne | pl_PL |