dc.contributor.author | Sobczyńska, Dorota | |
dc.contributor.author | Adamczyk, Katarzyna | |
dc.contributor.author | Sitarek, Julian | |
dc.contributor.author | Szanecki, Michał | |
dc.date.accessioned | 2021-10-08T09:48:30Z | |
dc.date.available | 2021-10-08T09:48:30Z | |
dc.date.issued | 2020 | |
dc.identifier.issn | 0927-6505 | |
dc.identifier.uri | http://hdl.handle.net/11089/39353 | |
dc.description.abstract | The effective observation time of Imaging Air Cherenkov Telescopes (IACTs) plays an important role in the detection of γ-ray sources, especially when the expected flux is low. This time is strongly limited by the atmospheric conditions. Significant extinction of Cherenkov light caused by the presence of clouds reduces the photon detection rate and also complicates or even makes impossible proper data analysis. However, for clouds with relatively high atmospheric transmission, high energy showers can still produce enough Cherenkov photons to allow their detection by IACTs. In this paper, we study the degradation of the detection capability of an array of small-sized telescopes for different cloud transmissions. We show the expected changes of the energy bias, energy and angular resolution and the effective collection area caused by absorption layers located at 2.5 and 4.5 km above the observation level. We demonstrate simple correction methods for reconstructed energy and effective collection area. As a result, the source flux that is observed during the presence of clouds is determined with a systematic error of 20%. Finally, we show that the proposed correction method can be used for clouds at altitudes higher than 5 km a.s.l. As a result, the analysis of data taken under certain cloudy conditions will not require additional time- consuming Monte Carlo simulations. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Elsevier | pl_PL |
dc.relation.ispartofseries | Astroparticle Physics;120 | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | γ-Rays | pl_PL |
dc.subject | General – Methods | pl_PL |
dc.subject | Observational – Instrumentation | pl_PL |
dc.subject | Detectors – Telescopes | pl_PL |
dc.title | An analysis method for data taken by Imaging Air Cherenkov Telescopes at very high energies under the presence of clouds | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 12 | pl_PL |
dc.contributor.authorAffiliation | University of Łódź, Department of Astrophysics, Pomorska 149/153, Łódź 90-236, Poland | pl_PL |
dc.contributor.authorAffiliation | University of Łódź, Department of Astrophysics, Pomorska 149/153, Łódź 90-236, Poland | pl_PL |
dc.contributor.authorAffiliation | University of Łódź, Department of Astrophysics, Pomorska 149/153, Łódź 90-236, Poland | pl_PL |
dc.contributor.authorAffiliation | CAMK, ul. Bartycka 18, Warsaw 00-716, Poland | pl_PL |
dc.references | M. Actis, et al. Exp. Astron., 32 (2011), p. 193 | pl_PL |
dc.references | B. Acharaya, et al. Astropart. Phys., 43 (2013), p. 3 | pl_PL |
dc.references | A. Acharyya, et al. Astropart. Phys., 111 (2019), p. 35 | pl_PL |
dc.references | K. Adamczyk, D. Sobczyńska AIP Conf. Proc., 1792 (2017), p. 80013 | pl_PL |
dc.references | F. Aharonian, et al. A&A, 457 (2004), p. 899 | pl_PL |
dc.references | Albert, et al. Nucl. Instrum. Methods Phys. Res.A, 588 (2008), p. 424 | pl_PL |
dc.references | Albert, et al. Nucl. Instrum. Methods Phys. Res. A, 583 (2007), p. 494 | pl_PL |
dc.references | J. Aleksić, et al. Astropart. Phys., 72 (2016), p. 76 | pl_PL |
dc.references | J. Aleksić, et al. Astropart. Phys., 35 (2012), p. 435 | pl_PL |
dc.references | A. Barnacka, et al. Proc. 33th Int. Cosmic Ray Conf. (Rio de Janerio) (2013) | pl_PL |
dc.references | S.A. Bass, et al. Prog. Part. Nucl. Phys., 41 (1998), p. 225 | pl_PL |
dc.references | K. Bernlöhr Astropart. Phys., 12 (2000), p. 255 | pl_PL |
dc.references | K. Bernlöhr Astropart. Phys., 30 (2008), p. 149 | pl_PL |
dc.references | K. Bernlöhr Proc. of the 1st atmoHEAD Workshop (2013) (2014) | pl_PL |
dc.references | M. Bleicher, et al. J. Phys. G., 25 (1999), p. 1859 | pl_PL |
dc.references | V.R. Chitnis, P.N. Bhat Astropart. Phys., 9 (1998), p. 45 | pl_PL |
dc.references | J. Devin, et al. EPJ Web of Conferences 197 (2019), p. 1001 | pl_PL |
dc.references | D. Dorner, et al. A&A, 493 (2009), p. 721 | pl_PL |
dc.references | M. Doro, et al. Proc. of the 1st atmoHEAD Workshop (2013) (2014) | pl_PL |
dc.references | C. Fruck, et al. Proc. 33th Int. Cosmic Ray Conf. (Rio De Janeiro 2013) (2013) | pl_PL |
dc.references | C. Fruck, M. Gaug Proc. of atmoHEAD 2014, EPJ Web of Conferences, vol. 89 (2015) | pl_PL |
dc.references | D. Garrido, et al. Proc. 33th Int. Cosmic Ray Conf. (Rio De Janeiro 2013) (2013), p. 0465 | pl_PL |
dc.references | M. Gaug Proc. of atmoHEAD Workshop (2016), EPJ Web of Conferences vol. 144 (2017), p. 01003 | pl_PL |
dc.references | M. Gaug, et al. Proc. of atmoHEAD Workshop (2018), EPJ Web of Conferences vol. 197 (2019), p. 02005 | pl_PL |
dc.references | J. Hahn, et al. Astropart. Phys., 54 (2014), p. 25 | pl_PL |
dc.references | D. Heck, et al. Technical report FZKA 6019 (forschungszentrum karlsruhe) (1998) | pl_PL |
dc.references | D. Heck, T. Pierog EAS Simulation with CORSIKA: A Users Manual (2011) | pl_PL |
dc.references | M. Heller, et al. Eur. Phys. J. C, 77 (2017), p. 47 | pl_PL |
dc.references | J. Holder, et al. Proc. 32th Int. Cosmic Ray Conf. (Beijing) 12 (2011), p. 137 | pl_PL |
dc.references | D. Hildebrand, et al. Proc. 33th Int. Cosmic Ray Conf. (Rio De Janerio) (2013), p. p.3020 | pl_PL |
dc.references | D. Hildebrand, et al. Proc. 35th Int. Cosmic Ray Conf.(Busan, Korea 2017) (2017) | pl_PL |
dc.references | M. Iarlori, et al. Proc. of atmoHEAD Workshop (2016), EPJ Web of Conferences vol. 144 (2017), p. 01008 | pl_PL |
dc.references | A. Kokhanovsky Earth-Sci. Rev., 64 (2004), pp. 189-241 | pl_PL |
dc.references | H. Kurlandczyk, M. Sarazin Proceedings of the SPIE “Remote Sensing of Clouds and the Atmosphere XII” vol. 6745 (2007) | pl_PL |
dc.references | A. López Oramas Proc. 33th int. Cosmic Ray Conf. (Rio de Janerio) (2013), p. p0210 | pl_PL |
dc.references | S.J. Nolan, et al. Astropart. Phys., 34 (2010), p. 304 | pl_PL |
dc.references | S. Ostapchenko Phys. Lett. B, 636 (2006), p. 40 | pl_PL |
dc.references | S. Ostapchenko Phys. Rev. D, 74 (2006), p. 014026 | pl_PL |
dc.references | S. Ostapchenko Collicers to Cosmic Rays, AIP Conference Proceedings 928 (2007), p. 118 | pl_PL |
dc.references | C.B. Rulten, et al. Proc. of the 1st atmoHEAD Workshop (2013) (2014) | pl_PL |
dc.references | J. Sitarek, et al. Astropart. Phys., 97 (2018), p. 1 | pl_PL |
dc.references | V. Sliusar, et al. Proc. 35th Int. Cosmic Ray Conf. (Busan, Korea 2017) (2017) | pl_PL |
dc.references | D. Sobczyńska J. Phys. G, 36 (2009), p. 045201 | pl_PL |
dc.references | D. Sobczyńska, W. Bednarek Proc. 33th Int. Cosmic Ray Conf. (Rio de Janerio) (2013), p. 00335 | pl_PL |
dc.references | D. Sobczyńska, W. Bednarek J. Phys. G, 41 (2014), p. 125201 | pl_PL |
dc.references | D. Sobczyńska, W. Bednarek Proc. of atmoHEAD (2014), EPJ Web of Conferences vol. 89 (2015) | pl_PL |
dc.references | T.C. Weekes, et al. Astrophys. J., 342 (1989), p. 379 | pl_PL |
dc.references | T.C. Weekes, et al. Astropart. Phys., 17 (2002), p. 221 | pl_PL |
dc.references | L. Valore, et al. Proc. 35th Int. Cosmic Ray Conf. (Busan, Korea 2017) (2017) | pl_PL |
dc.references | R. Zanin, et al. Proc. 33th Int. Cosmic Ray Conf. (Rio de Janerio) (2013) | pl_PL |
dc.identifier.doi | 10.1016/j.astropartphys.2020.102450 | |
dc.relation.volume | 102450 | pl_PL |
dc.discipline | nauki fizyczne | pl_PL |