Show simple item record

dc.contributor.authorSobczyńska, Dorota
dc.contributor.authorAdamczyk, Katarzyna
dc.contributor.authorSitarek, Julian
dc.contributor.authorSzanecki, Michał
dc.date.accessioned2021-10-08T09:48:30Z
dc.date.available2021-10-08T09:48:30Z
dc.date.issued2020
dc.identifier.issn0927-6505
dc.identifier.urihttp://hdl.handle.net/11089/39353
dc.description.abstractThe effective observation time of Imaging Air Cherenkov Telescopes (IACTs) plays an important role in the detection of γ-ray sources, especially when the expected flux is low. This time is strongly limited by the atmospheric conditions. Significant extinction of Cherenkov light caused by the presence of clouds reduces the photon detection rate and also complicates or even makes impossible proper data analysis. However, for clouds with relatively high atmospheric transmission, high energy showers can still produce enough Cherenkov photons to allow their detection by IACTs. In this paper, we study the degradation of the detection capability of an array of small-sized telescopes for different cloud transmissions. We show the expected changes of the energy bias, energy and angular resolution and the effective collection area caused by absorption layers located at 2.5 and 4.5 km above the observation level. We demonstrate simple correction methods for reconstructed energy and effective collection area. As a result, the source flux that is observed during the presence of clouds is determined with a systematic error of 20%. Finally, we show that the proposed correction method can be used for clouds at altitudes higher than 5 km a.s.l. As a result, the analysis of data taken under certain cloudy conditions will not require additional time- consuming Monte Carlo simulations.pl_PL
dc.language.isoenpl_PL
dc.publisherElsevierpl_PL
dc.relation.ispartofseriesAstroparticle Physics;120
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectγ-Rayspl_PL
dc.subjectGeneral – Methodspl_PL
dc.subjectObservational – Instrumentationpl_PL
dc.subjectDetectors – Telescopespl_PL
dc.titleAn analysis method for data taken by Imaging Air Cherenkov Telescopes at very high energies under the presence of cloudspl_PL
dc.typeArticlepl_PL
dc.page.number12pl_PL
dc.contributor.authorAffiliationUniversity of Łódź, Department of Astrophysics, Pomorska 149/153, Łódź 90-236, Polandpl_PL
dc.contributor.authorAffiliationUniversity of Łódź, Department of Astrophysics, Pomorska 149/153, Łódź 90-236, Polandpl_PL
dc.contributor.authorAffiliationUniversity of Łódź, Department of Astrophysics, Pomorska 149/153, Łódź 90-236, Polandpl_PL
dc.contributor.authorAffiliationCAMK, ul. Bartycka 18, Warsaw 00-716, Polandpl_PL
dc.referencesM. Actis, et al. Exp. Astron., 32 (2011), p. 193pl_PL
dc.referencesB. Acharaya, et al. Astropart. Phys., 43 (2013), p. 3pl_PL
dc.referencesA. Acharyya, et al. Astropart. Phys., 111 (2019), p. 35pl_PL
dc.referencesK. Adamczyk, D. Sobczyńska AIP Conf. Proc., 1792 (2017), p. 80013pl_PL
dc.referencesF. Aharonian, et al. A&A, 457 (2004), p. 899pl_PL
dc.referencesAlbert, et al. Nucl. Instrum. Methods Phys. Res.A, 588 (2008), p. 424pl_PL
dc.referencesAlbert, et al. Nucl. Instrum. Methods Phys. Res. A, 583 (2007), p. 494pl_PL
dc.referencesJ. Aleksić, et al. Astropart. Phys., 72 (2016), p. 76pl_PL
dc.referencesJ. Aleksić, et al. Astropart. Phys., 35 (2012), p. 435pl_PL
dc.referencesA. Barnacka, et al. Proc. 33th Int. Cosmic Ray Conf. (Rio de Janerio) (2013)pl_PL
dc.referencesS.A. Bass, et al. Prog. Part. Nucl. Phys., 41 (1998), p. 225pl_PL
dc.referencesK. Bernlöhr Astropart. Phys., 12 (2000), p. 255pl_PL
dc.referencesK. Bernlöhr Astropart. Phys., 30 (2008), p. 149pl_PL
dc.referencesK. Bernlöhr Proc. of the 1st atmoHEAD Workshop (2013) (2014)pl_PL
dc.referencesM. Bleicher, et al. J. Phys. G., 25 (1999), p. 1859pl_PL
dc.referencesV.R. Chitnis, P.N. Bhat Astropart. Phys., 9 (1998), p. 45pl_PL
dc.referencesJ. Devin, et al. EPJ Web of Conferences 197 (2019), p. 1001pl_PL
dc.referencesD. Dorner, et al. A&A, 493 (2009), p. 721pl_PL
dc.referencesM. Doro, et al. Proc. of the 1st atmoHEAD Workshop (2013) (2014)pl_PL
dc.referencesC. Fruck, et al. Proc. 33th Int. Cosmic Ray Conf. (Rio De Janeiro 2013) (2013)pl_PL
dc.referencesC. Fruck, M. Gaug Proc. of atmoHEAD 2014, EPJ Web of Conferences, vol. 89 (2015)pl_PL
dc.referencesD. Garrido, et al. Proc. 33th Int. Cosmic Ray Conf. (Rio De Janeiro 2013) (2013), p. 0465pl_PL
dc.referencesM. Gaug Proc. of atmoHEAD Workshop (2016), EPJ Web of Conferences vol. 144 (2017), p. 01003pl_PL
dc.referencesM. Gaug, et al. Proc. of atmoHEAD Workshop (2018), EPJ Web of Conferences vol. 197 (2019), p. 02005pl_PL
dc.referencesJ. Hahn, et al. Astropart. Phys., 54 (2014), p. 25pl_PL
dc.referencesD. Heck, et al. Technical report FZKA 6019 (forschungszentrum karlsruhe) (1998)pl_PL
dc.referencesD. Heck, T. Pierog EAS Simulation with CORSIKA: A Users Manual (2011)pl_PL
dc.referencesM. Heller, et al. Eur. Phys. J. C, 77 (2017), p. 47pl_PL
dc.referencesJ. Holder, et al. Proc. 32th Int. Cosmic Ray Conf. (Beijing) 12 (2011), p. 137pl_PL
dc.referencesD. Hildebrand, et al. Proc. 33th Int. Cosmic Ray Conf. (Rio De Janerio) (2013), p. p.3020pl_PL
dc.referencesD. Hildebrand, et al. Proc. 35th Int. Cosmic Ray Conf.(Busan, Korea 2017) (2017)pl_PL
dc.referencesM. Iarlori, et al. Proc. of atmoHEAD Workshop (2016), EPJ Web of Conferences vol. 144 (2017), p. 01008pl_PL
dc.referencesA. Kokhanovsky Earth-Sci. Rev., 64 (2004), pp. 189-241pl_PL
dc.referencesH. Kurlandczyk, M. Sarazin Proceedings of the SPIE “Remote Sensing of Clouds and the Atmosphere XII” vol. 6745 (2007)pl_PL
dc.referencesA. López Oramas Proc. 33th int. Cosmic Ray Conf. (Rio de Janerio) (2013), p. p0210pl_PL
dc.referencesS.J. Nolan, et al. Astropart. Phys., 34 (2010), p. 304pl_PL
dc.referencesS. Ostapchenko Phys. Lett. B, 636 (2006), p. 40pl_PL
dc.referencesS. Ostapchenko Phys. Rev. D, 74 (2006), p. 014026pl_PL
dc.referencesS. Ostapchenko Collicers to Cosmic Rays, AIP Conference Proceedings 928 (2007), p. 118pl_PL
dc.referencesC.B. Rulten, et al. Proc. of the 1st atmoHEAD Workshop (2013) (2014)pl_PL
dc.referencesJ. Sitarek, et al. Astropart. Phys., 97 (2018), p. 1pl_PL
dc.referencesV. Sliusar, et al. Proc. 35th Int. Cosmic Ray Conf. (Busan, Korea 2017) (2017)pl_PL
dc.referencesD. Sobczyńska J. Phys. G, 36 (2009), p. 045201pl_PL
dc.referencesD. Sobczyńska, W. Bednarek Proc. 33th Int. Cosmic Ray Conf. (Rio de Janerio) (2013), p. 00335pl_PL
dc.referencesD. Sobczyńska, W. Bednarek J. Phys. G, 41 (2014), p. 125201pl_PL
dc.referencesD. Sobczyńska, W. Bednarek Proc. of atmoHEAD (2014), EPJ Web of Conferences vol. 89 (2015)pl_PL
dc.referencesT.C. Weekes, et al. Astrophys. J., 342 (1989), p. 379pl_PL
dc.referencesT.C. Weekes, et al. Astropart. Phys., 17 (2002), p. 221pl_PL
dc.referencesL. Valore, et al. Proc. 35th Int. Cosmic Ray Conf. (Busan, Korea 2017) (2017)pl_PL
dc.referencesR. Zanin, et al. Proc. 33th Int. Cosmic Ray Conf. (Rio de Janerio) (2013)pl_PL
dc.identifier.doi10.1016/j.astropartphys.2020.102450
dc.relation.volume102450pl_PL
dc.disciplinenauki fizycznepl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe