Show simple item record

dc.contributor.authorIdczak, Dariusz
dc.contributor.authorWalczak, Stanislaw
dc.date.accessioned2021-10-07T09:27:58Z
dc.date.available2021-10-07T09:27:58Z
dc.date.issued2020
dc.identifier.citationIdczak, D.; Walczak, S. An Extremum Principle for Smooth Problems. Games 2020, 11, 56. https://doi.org/10.3390/g11040056pl_PL
dc.identifier.issn2073-4336
dc.identifier.urihttp://hdl.handle.net/11089/39350
dc.description.abstractWe derive an extremum principle. It can be treated as an intermediate result between the celebrated smooth-convex extremum principle due to Ioffe and Tikhomirov and the Dubovitskii–Milyutin theorem. The proof of this principle is based on a simple generalization of the Fermat’s theorem, the smooth-convex extremum principle and the local implicit function theorem. An integro-differential example illustrating the new principle is presented.pl_PL
dc.language.isoenpl_PL
dc.publisherMDPIpl_PL
dc.relation.ispartofseriesGames;11(4)
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectextremum principlepl_PL
dc.subjectFermat’s theorempl_PL
dc.subjectlocal implicit function theorempl_PL
dc.titleAn Extremum Principle for Smooth Problemspl_PL
dc.typeArticlepl_PL
dc.page.number6pl_PL
dc.contributor.authorAffiliationFaculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Lodz, Polandpl_PL
dc.contributor.authorAffiliationFaculty of Mathematics and Computer Science, University of Lodz, Banacha 22, 90-238 Lodz, Poland; Faculty of Mathematics and Computer Science, Stefan Batory State University, Batorego 64C, 96-100 Skierniewice, Polandpl_PL
dc.referencesIoffe, A.D.; Tikhomirov, V.M. Theory of Extremal Problems; Elsevier: Amsterdam, The Netherlands, 1979.pl_PL
dc.referencesDubovitskii, M.Y.; Milyutin, A.A. The extremum problem in the presence of constraints. Dokl. Acad. Nauk SSSR 1963, 149, 759–762.pl_PL
dc.referencesDubovitskii, M.Y.; Milyutin, A.A. Extremum problems in the presence of constraints. Zh. Vychisl. Mat. Mat. Fiz. 1965, 5, 395–453.pl_PL
dc.referencesGirsanov, I.W. Lectures on Mathematical Theory of Extremum Problems; Springer: New York, NY, USA, 1972.pl_PL
dc.referencesAvakov, E.R.; Magaril-Il’yaev, G.G.; Tikhomirov, V.M. Lagrange’s principle in extremum problems with constraints. Russ. Math. Surv. 2013, 68, 401–433.pl_PL
dc.referencesIdczak, D.; Walczak, S. Necessary optimality conditions for an integro-differential Bolza problem via Dubovitskii-Milyutin method. Discret. Contin. Dyn. Syst. B 2019, 24, 2281.pl_PL
dc.identifier.doihttps://doi.org/10.3390/g11040056
dc.relation.volume56pl_PL
dc.subject.msc90C48
dc.subject.msc49K27
dc.disciplinematematykapl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa 4.0 Międzynarodowe