dc.contributor.author | Góralczyk-Bińkowska, Aleksandra | |
dc.contributor.author | Nowak, Marta | |
dc.contributor.author | Zawadzka, Katarzyna | |
dc.contributor.author | Lisowska, Katarzyna | |
dc.contributor.author | Szemraj, Janusz | |
dc.date.accessioned | 2021-10-01T09:35:35Z | |
dc.date.available | 2021-10-01T09:35:35Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Nowak, M.; Zawadzka, K.; Szemraj, J.; Góralczyk-Bi ´nkowska, A.; Lisowska, K. Biodegradation of Chloroxylenol by Cunninghamella elegans IM 1785/21GP and Trametes versicolor IM 373: Insight into Ecotoxicity and Metabolic Pathways. Int. J. Mol. Sci. 2021, 22, 4360. https://doi.org/10.3390/ijms22094360 | pl_PL |
dc.identifier.issn | 1422-0067 | |
dc.identifier.uri | http://hdl.handle.net/11089/39303 | |
dc.description.abstract | Chloroxylenol (PCMX) is applied as a preservative and disinfectant in personal care
products, currently recommended for use to inactivate the SARS-CoV-2 virus. Its intensive application
leads to the release of PCMX into the environment, which can have a harmful impact on aquatic
and soil biotas. The aim of this study was to assess the mechanism of chloroxylenol biodegradation
by the fungal strains Cunninghamella elegans IM 1785/21GP and Trametes versicolor IM 373, and
investigate the ecotoxicity of emerging by-products. The residues of PCMX and formed metabolites
were analysed using GC-MS. The elimination of PCMX in the cultures of tested microorganisms
was above 70%. Five fungal by-products were detected for the first time. Identified intermediates
were performed by dechlorination, hydroxylation, and oxidation reactions catalysed by cytochrome
P450 enzymes and laccase. A real-time quantitative PCR analysis confirmed an increase in CYP450
genes expression in C. elegans cells. In the case of T. versicolor, spectrophotometric measurement of
the oxidation of 2,20-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) showed a significant
rise in laccase activity during PCMX elimination. Furthermore, with the use of bioindicators from
different ecosystems (Daphtoxkit F and Phytotoxkit), it was revealed that the biodegradation process
of PCMX had a detoxifying nature. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | MDPI | pl_PL |
dc.relation.ispartofseries | International Journal of Molecular Sciences;22, 4360 | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | biodegradation | pl_PL |
dc.subject | chloroxylenol | pl_PL |
dc.subject | cytochrome P450 | pl_PL |
dc.subject | detoxification | pl_PL |
dc.subject | environmental xenobiotics | pl_PL |
dc.subject | filamentous fungi | pl_PL |
dc.subject | laccase | pl_PL |
dc.title | Biodegradation of Chloroxylenol by Cunninghamella elegans IM 1785/21GP and Trametes versicolor IM 373: Insight into Ecotoxicity and Metabolic Pathways | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 16 | pl_PL |
dc.contributor.authorAffiliation | Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, 12/16 Banacha Street, 90-237 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, 12/16 Banacha Street, 90-237 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, 12/16 Banacha Street, 90-237 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, 12/16 Banacha Street, 90-237 Łódź, Poland | pl_PL |
dc.contributor.authorAffiliation | Department of Medical Biochemistry, Medical University of Łódź, 6/8 Mazowiecka Street, 92-215 Łódź, Poland | pl_PL |
dc.references | Biel-Maeso, M.; Corada-Fernández, C.; Lara-Martín, P.A. Removal of Personal Care Products (PCPs) inWastewater and Sludge Treatment and Their Occurrence in Receiving Soils. Water Res. 2019, 150, 129–139. | pl_PL |
dc.references | Bruch, M.K. Chloroxylenol: An Old–New Antimicrobial. In Handbook of Disinfectants and Antiseptics; Ascenzi, J.M., Ed.; Marcel Dekker: New York, NY, USA, 1996; pp. 265–294. | pl_PL |
dc.references | NEA Interim List of Household Products and Active Ingredients for Surface Disinfection of the COVID-19 Virus. Available online: https://www.nea.gov.sg/our-services/public-cleanliness/environmental-cleaning-guidelines/guidelines/interim-listof- household-products-and-active-ingredients-for-disinfection-of-covid-19 (accessed on 15 January 2021). | pl_PL |
dc.references | Neerukonda, S.N.; Katneni, U. A Review on SARS-CoV-2 Virology, Pathophysiology, Animal Models, and Anti-Viral Interventions. Pathogens 2020, 9, 426. | pl_PL |
dc.references | Wu, Y.-C.; Chen, C.-S.; Chan, Y.-J. The Outbreak of COVID-19: An Overview. J. Chin. Med. Assoc. 2020, 83, 217–220. | pl_PL |
dc.references | Zhong, W.; Wang, D.; Xu, X. Phenol Removal Efficiencies of Sewage Treatment Processes and Ecological Risks Associated with Phenols in Effluents. J. Hazard. Mater. 2012, 217–218, 286–292. | pl_PL |
dc.references | Loraine, G.A.; Pettigrove, M.E. Seasonal Variations in Concentrations of Pharmaceuticals and Personal Care Products in Drinking Water and ReclaimedWastewater in Southern California. Environ. Sci. Technol. 2006, 40, 687–695. | pl_PL |
dc.references | Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. Multiresidue Methods for the Analysis of Pharmaceuticals, Personal care Products and Illicit Drugs in SurfaceWater andWastewater by Solid-Phase Extraction and Ultra Performance Liquid Chromatography– Electrospray Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2008, 391, 1293–1308. | pl_PL |
dc.references | Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The Removal of Pharmaceuticals, Personal care Products, Endocrine Disruptors and Illicit Drugs DuringWastewater Treatment and its Impact on the Quality of ReceivingWaters. Water Res. 2009, 43, 363–380. | pl_PL |
dc.references | Rostkowski, P.; Horwood, J.; Shears, J.A.; Lange, A.; Oladapo, F.O.; Besselink, H.T.; Tyler, C.R.; Hill, E.M. Bioassay-Directed Identification of Novel Antiandrogenic Compounds in Bile of Fish Exposed to Wastewater Effluents. Environ. Sci. Technol. 2011, 45, 10660–10667. | pl_PL |
dc.references | Dsikowitzky, L.; Sträter, M.; Dwiyitno, D.; Ariyani, F.; Irianto, H.E.; Schwarzbauer, J. First Comprehensive Screening of Lipophilic Organic Contaminants in Surface Waters of the Megacity Jakarta, Indonesia. Mar. Pollut. Bull. 2016, 110, 654–664. | pl_PL |
dc.references | Dsikowitzky, L.; Hagemann, L.; Dwiyitno; Ariyani, F.; Schwarzbauer, J.; Irianto, H.E. Complex Organic Pollutant Mixtures Originating from Industrial and Municipal Emissions in SurfaceWaters of the Megacity Jakarta—an Example of aWater Pollution Problem in Emerging Economies. Environ. Sci. Pollut. Res. 2017, 24, 27539–27552. | pl_PL |
dc.references | Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The Occurrence of Pharmaceuticals, Personal Care Products, Endocrine Disruptors and Illicit Drugs in Surface Water in South Wales, UK. Water Res. 2008, 42, 3498–3518. | pl_PL |
dc.references | Guess, W.L.; Bruch, M. A Review of Available Toxicity Data on the Topical Antimicrobial, Chloroxylenol. J. Toxicol. Cutan. Ocul. Toxicol. 1986, 5, 233–262. | pl_PL |
dc.references | Capkin, E.; Ozcelep, T.; Kayis, S.; Altinok, I. Antimicrobial Agents, Triclosan, Chloroxylenol, Methylisothiazolinone and Borax, Used in Cleaning had Genotoxic and Histopathologic Effects on Rainbow Trout. Chemosphere 2017, 182, 720–729. | pl_PL |
dc.references | Sreevidya, V.S.; Lenz, K.A.; Svoboda, K.R.; Ma, H. Benzalkonium Chloride, Benzethonium Chloride, and Chloroxylenol—Three Replacement Antimicrobials are More Toxic than Triclosan and Triclocarban in Two Model Organisms. Environ. Pollut. 2018, 235, 814–824. | pl_PL |
dc.references | Xu, L.; Wang, J. Degradation of 4-Chloro-3,5-Dimethylphenol by a Heterogeneous Fenton-Like Reaction Using Nanoscale Zero-Valent Iron Catalysts. Environ. Eng. Sci. 2013, 30, 294–301. | pl_PL |
dc.references | Sadhukhan, S.; Singha, S.; Sarkar, U. Adsorption of Para Chloro Meta Xylenol (PCMX) in Composite Adsorbent Beds: Parameter Estimation Using Nonlinear Least Square Technique. Chem. Eng. J. 2009, 152, 361–366. | pl_PL |
dc.references | Song, S.; Liu, Z.; He, Z.; Li, Y.; Chen, J.; Li, C. Degradation of the Biocide 4-Chloro-3,5-Dimethylphenol in Aqueous Medium with Ozone in Combination with Ultraviolet Irradiation: Operating Conditions Influence and Mechanism. Chemosphere 2009, 77, 1043–1051. | pl_PL |
dc.references | Li, W.; Guo, H.; Wang, C.; Zhang, Y.; Cheng, X.; Wang, J.; Yang, B.; Du, E. ROS Reevaluation for Degradation of 4-Chloro-3,5- Dimethylphenol (PCMX) by UV and UV/Persulfate Processes in the Water: Kinetics, Mechanism, DFT Studies and Toxicity Evolution. Chem. Eng. J. 2020, 390, 124610. | pl_PL |
dc.references | Activated Persulfate: Kinetics, Mechanisms and Toxicities. Chem. Eng. J. 2019, 368, 553–563. | pl_PL |
dc.references | Caracciolo, A.B.; Topp, E.; Grenni, P. Pharmaceuticals in the Environment: Biodegradation and Effects on Natural Microbial Communities. A Review. J. Pharm. Biomed. Anal. 2015, 106, 25–36. | pl_PL |
dc.references | Brahma, B.; Sarkar, P.; Sarkar, U. P-Chloro Meta Xylenol (PCMX) Tolerant Bacteria and Their Biodegradation. Int. J. Adv. Sci. Eng. Technol. 2016, 4, 88–91. | pl_PL |
dc.references | Ghanem, K.M.; Al-Fassi, F.A.; Al-Hazmi, N.M. Optimization of Chloroxylenol Degradation by Aspergillus Niger Using Plackett- Burman Design and Response Surface Methodology. Rom. Biotechnol. Lett. 2013, 11, 15040–15048. | pl_PL |
dc.references | Thomas, R.E.; Kotchevar, A.T. Comparativein Vitrometabolism of Chloroxylenol, Chlorophene, and Triclosan with Rat, Mouse, and Human Hepatic Microsomes. Toxicol. Environ. Chem. 2010, 92, 1735–1747. | pl_PL |
dc.references | Kang, C.S.; Kim, H.S. Function Analysis of Chlorophenol Monooxygenase for Chlorophenol Degradation. Adv. Mater. Res. 2014, 1073–1076, 700–703. | pl_PL |
dc.references | Kang, C.; Yang, J.W.; Cho,W.; Kwak, S.; Park, S.; Lim, Y.; Choe, J.W.; Kim, H.S. Oxidative Biodegradation of 4-Chlorophenol by Using Recombinant Monooxygenase Cloned and Overexpressed from Arthrobacter Chlorophenolicus A6. Bioresour. Technol. 2017, 240, 123–129. | pl_PL |
dc.references | Lehning, A.; Fock, U.; Wittich, R.; Timmis, K.N.; Pieper, D.H. Metabolism of Chlorotoluenes by Burkholderia sp. Strain PS12 and Toluene Dioxygenase of Pseudomonas putida F1: Evidence for Monooxygenation by Toluene and Chlorobenzene Dioxygenases. Appl. Environ. Microbiol. 1997, 63, 1974–1979. | pl_PL |
dc.references | Duc, H.D. Degradation of chlorotoluenes by Comamonas testosterone KT5. Appl. Biol. Chem. 2017, 60, 457–465. | pl_PL |
dc.references | Nguyen, O.T.; Ha, D.D. Degradation of Chlorotoluenes and Chlorobenzenes by the Dual-Species Biofilm of Comamonas Testosteroni Strain KT5 and Bacillus Subtilis Strain DKT. Ann. Microbiol. 2019, 69, 267–277. | pl_PL |
dc.references | Dobslaw, D.; Engesser, K. Degradation of Toluene by Ortho Cleavage Enzymes in B Urkholderia Fungorum FLU 100. Microb. Biotechnol. 2014, 8, 143–154. | pl_PL |
dc.references | Dobslaw, D.; Engesser, K.-H. Degradation of 2-Chlorotoluene by Rhodococcus sp. OCT 10. Appl. Microbiol. Biotechnol. 2012, 93, 2205–2214. | pl_PL |
dc.references | Farrell, A.; Quilty, B. Degradation of Mono-Chlorophenols by a Mixed Microbial Community via a Meta-Cleavage Pathway. Biodegradation 1999, 10, 353–362. | pl_PL |
dc.references | Arora, P.K.; Bae, H. Bacterial Degradation of Chlorophenols and Their Derivatives. Microb. Cell Factories 2014, 13, 31. | pl_PL |
dc.references | Mtibaà, R.; Ezzanad, A.; Aranda, E.; Pozo, C.; Ghariani, B.; Moraga, J.; Nasri, M.; Cantoral, J.M.; Garrido, C.; Mechichi, T. Biodegradation and Toxicity Reduction of Nonylphenol, 4-Tert-Octylphenol and 2,4-Dichlorophenol by the Ascomycetous Fungus Thielavia sp HJ22: Identification of Fungal Metabolites and Proposal of a Putative Pathway. Sci. Total. Environ. 2020, 708, 135129. | pl_PL |
dc.references | Kordon, K.; Mikolasch, A.; Schauer, F. Oxidative Dehalogenation of Chlorinated Hydroxybiphenyls by Laccases of White-Rot Fungi. Int. Biodeterior. Biodegrad. 2010, 64, 203–209. | pl_PL |
dc.references | Gomaa, M.N.; Almaghrabi, O.A.; Elshoura, A.A.; Soliman, A.M.; Gharieb, M.M. Novel Mixture of Chloroxylenol and Copper alters Candida Albicans Biofilm Formation, Biochemical Characteristics, and Morphological Features. J. Taibah Univ. Sci. 2020, 14, 889–895. | pl_PL |
dc.references | Mohammed, S.R.; Al-Jibouri, M. Isolation and Identification of Fungi from Two Hospitals in Baghdad City and Effect of Disin-Fectants on some Fungi. IRAQI J. Sci. 2015, 56, 673–682. | pl_PL |
dc.references | Zhou, Y.; Cheng, G.; Chen, K.; Lu, J.; Lei, J.; Pu, S. Adsorptive Removal of Bisphenol A, Chloroxylenol, and Carbamazepine from Water Using a Novel -Cyclodextrin Polymer. Ecotoxicol. Environ. Saf. 2019, 170, 278–285. | pl_PL |
dc.references | Choi, D.; Oh, S. Removal of Chloroxylenol Disinfectant by an Activated Sludge Microbial Community. Microbes Environ. 2019, 34, 129–135. | pl_PL |
dc.references | Mori, T.; Sudo, S.; Kawagishi, H.; Hirai, H. Biodegradation of Diuron in Artificially Contaminated Water and Seawater by Wood Colonized with the White-Rot Fungus Trametes Versicolor. J. Wood Sci. 2018, 64, 690–696. | pl_PL |
dc.references | Zawadzka, K.; Felczak, A.; Szemraj, J.; Lisowska, K. Novel Metabolites from Cunninghamella Elegans as a Microbial Model of the -Blocker Carvedilol Biotransformation in the Environment. Int. Biodeterior. Biodegrad. 2018, 127, 227–235. | pl_PL |
dc.references | Palmer-Brown, W.; Souza, P.L.D.M.; Murphy, C.D. Cyhalothrin Biodegradation in Cunninghamella Elegans. Environ. Sci. Pollut. Res. 2019, 26, 1414–1421. | pl_PL |
dc.references | Mallak, A.M.; Lakzian, A.; Khodaverdi, E.; Haghnia, G.H.; Mahmoudi, S. Effect of Pleurotus Ostreatus and Trametes Versicolor on Triclosan Biodegradation and Activity of Laccase and Manganese Peroxidase Enzymes. Microb. Pathog. 2020, 149, 104473. | pl_PL |
dc.references | Ghanem, K.M.; Elahwany, A.; Farag, A.; Ghanem, D. Optimization the Degradation of Chloroxylenol by Free and Immobilized Klebsiella Pneumoniae D2. Int. J. Curr. Adv. Res. 2017, 6, 7082–7091. | pl_PL |
dc.references | Chen, M.; Zeng, G.; Lai, C.; Li, J.; Xu, P.;Wu, H. Molecular Basis of Laccase Bound to Lignin: Insight from Comparative Studies on the Interaction of Trametes Versicolor Laccase with Various Lignin Model Compounds. RSC Adv. 2015, 5, 52307–52313. | pl_PL |
dc.references | Haugland, J.O.; Kinney, K.A.; Johnson,W.H., Jr.; Camino, M.M.A.; Whitman, C.P.; Lawler, D.F. Laccase Removal of 2-Chlorophenol and Sulfamethoxazole in Municipal Wastewater. Water Environ. Res. 2019, 91, 281–291. | pl_PL |
dc.references | Mougin, C.; Kollmann, A.; Jolivalt, C. Enhanced Production of Laccase in the Fungus Trametes Versicolor by the Addition of Xenobiotics. Biotechnol. Lett. 2002, 24, 139–142. | pl_PL |
dc.references | Yang, S.; Hai, F.I.; Nghiem, L.D.; Nguyen, L.N.; Roddick, F.; Price, W.E. Removal of Bisphenol A and Diclofenac by a Novel Fungal Membrane Bioreactor Operated Under Non-Sterile Conditions. Int. Biodeterior. Biodegrad. 2013, 85, 483–490. | pl_PL |
dc.references | Navada, K.K.; Kulal, A. Enzymatic Degradation of Chloramphenicol by Laccase from Trametes Hirsuta and Comparison Among Mediators. Int. Biodeterior. Biodegrad. 2019, 138, 63–69. | pl_PL |
dc.references | Zawadzka, K.; Bernat, P.; Felczak, A.; Lisowska, K. Microbial Detoxification of Carvedilol, a -Adrenergic Antagonist, by the Filamentous Fungus Cunninghamella Echinulata. Chemosphere 2017, 183, 18–26. | pl_PL |
dc.references | Nowak, M.; Zawadzka, K.; Lisowska, K. Occurrence of Methylisothiazolinone in Water and Soil Samples in Poland and its Biodegradation by Phanerochaete Chrysosporium. Chemosphere 2020, 254, 126723. | pl_PL |
dc.references | Krupi ´ nski, M.; Janicki, T.; Pałecz, B.; Długo´ nski, J. Biodegradation and Utilization of 4-n-Nonylphenol by Aspergillus Versicolor as a Sole Carbon and Energy Source. J. Hazard. Mater. 2014, 280, 678–684. | pl_PL |
dc.references | Nowak, M.; Sobon´ , A.; Litwin, A.; Róz˙alska, S. 4-n-Nonylphenol Degradation by the genus Metarhizium with Cytochrome P450 Involvement. Chemosphere 2019, 220, 324–334. | pl_PL |
dc.references | Winer, J.; Jung, C.K.S.; Shackel, I.;Williams, P. Development and Validation of Real-Time Quantitative Reverse Transcriptase– Polymerase Chain Reaction for Monitoring Gene Expression in Cardiac Myocytesin Vitro. Anal. Biochem. 1999, 270, 41–49. | pl_PL |
dc.references | Góralczyk-Bi ´nkowska, A.; Jasi ´ nska, A.; Długo´ nski, A.; Płoci ´ nski, P.; Długo´ nski, J. Laccase Activity of the Ascomycete Fungus Nectriella Pironii and Innovative Strategies for its Production on Leaf Litter of an Urban Park. PLoS ONE 2020, 15, e0231453. | pl_PL |
dc.contributor.authorEmail | aleksandra.goralczyk@biol.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.3390/ijms22094360 | |
dc.discipline | nauki biologiczne | pl_PL |