Pokaż uproszczony rekord

dc.contributor.authorGóralczyk-Bińkowska, Aleksandra
dc.contributor.authorNowak, Marta
dc.contributor.authorZawadzka, Katarzyna
dc.contributor.authorLisowska, Katarzyna
dc.contributor.authorSzemraj, Janusz
dc.date.accessioned2021-10-01T09:35:35Z
dc.date.available2021-10-01T09:35:35Z
dc.date.issued2021
dc.identifier.citationNowak, M.; Zawadzka, K.; Szemraj, J.; Góralczyk-Bi ´nkowska, A.; Lisowska, K. Biodegradation of Chloroxylenol by Cunninghamella elegans IM 1785/21GP and Trametes versicolor IM 373: Insight into Ecotoxicity and Metabolic Pathways. Int. J. Mol. Sci. 2021, 22, 4360. https://doi.org/10.3390/ijms22094360pl_PL
dc.identifier.issn1422-0067
dc.identifier.urihttp://hdl.handle.net/11089/39303
dc.description.abstractChloroxylenol (PCMX) is applied as a preservative and disinfectant in personal care products, currently recommended for use to inactivate the SARS-CoV-2 virus. Its intensive application leads to the release of PCMX into the environment, which can have a harmful impact on aquatic and soil biotas. The aim of this study was to assess the mechanism of chloroxylenol biodegradation by the fungal strains Cunninghamella elegans IM 1785/21GP and Trametes versicolor IM 373, and investigate the ecotoxicity of emerging by-products. The residues of PCMX and formed metabolites were analysed using GC-MS. The elimination of PCMX in the cultures of tested microorganisms was above 70%. Five fungal by-products were detected for the first time. Identified intermediates were performed by dechlorination, hydroxylation, and oxidation reactions catalysed by cytochrome P450 enzymes and laccase. A real-time quantitative PCR analysis confirmed an increase in CYP450 genes expression in C. elegans cells. In the case of T. versicolor, spectrophotometric measurement of the oxidation of 2,20-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) showed a significant rise in laccase activity during PCMX elimination. Furthermore, with the use of bioindicators from different ecosystems (Daphtoxkit F and Phytotoxkit), it was revealed that the biodegradation process of PCMX had a detoxifying nature.pl_PL
dc.language.isoenpl_PL
dc.publisherMDPIpl_PL
dc.relation.ispartofseriesInternational Journal of Molecular Sciences;22, 4360
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectbiodegradationpl_PL
dc.subjectchloroxylenolpl_PL
dc.subjectcytochrome P450pl_PL
dc.subjectdetoxificationpl_PL
dc.subjectenvironmental xenobioticspl_PL
dc.subjectfilamentous fungipl_PL
dc.subjectlaccasepl_PL
dc.titleBiodegradation of Chloroxylenol by Cunninghamella elegans IM 1785/21GP and Trametes versicolor IM 373: Insight into Ecotoxicity and Metabolic Pathwayspl_PL
dc.typeArticlepl_PL
dc.page.number16pl_PL
dc.contributor.authorAffiliationDepartment of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, 12/16 Banacha Street, 90-237 Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, 12/16 Banacha Street, 90-237 Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, 12/16 Banacha Street, 90-237 Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, 12/16 Banacha Street, 90-237 Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Medical Biochemistry, Medical University of Łódź, 6/8 Mazowiecka Street, 92-215 Łódź, Polandpl_PL
dc.referencesBiel-Maeso, M.; Corada-Fernández, C.; Lara-Martín, P.A. Removal of Personal Care Products (PCPs) inWastewater and Sludge Treatment and Their Occurrence in Receiving Soils. Water Res. 2019, 150, 129–139.pl_PL
dc.referencesBruch, M.K. Chloroxylenol: An Old–New Antimicrobial. In Handbook of Disinfectants and Antiseptics; Ascenzi, J.M., Ed.; Marcel Dekker: New York, NY, USA, 1996; pp. 265–294.pl_PL
dc.referencesNEA Interim List of Household Products and Active Ingredients for Surface Disinfection of the COVID-19 Virus. Available online: https://www.nea.gov.sg/our-services/public-cleanliness/environmental-cleaning-guidelines/guidelines/interim-listof- household-products-and-active-ingredients-for-disinfection-of-covid-19 (accessed on 15 January 2021).pl_PL
dc.referencesNeerukonda, S.N.; Katneni, U. A Review on SARS-CoV-2 Virology, Pathophysiology, Animal Models, and Anti-Viral Interventions. Pathogens 2020, 9, 426.pl_PL
dc.referencesWu, Y.-C.; Chen, C.-S.; Chan, Y.-J. The Outbreak of COVID-19: An Overview. J. Chin. Med. Assoc. 2020, 83, 217–220.pl_PL
dc.referencesZhong, W.; Wang, D.; Xu, X. Phenol Removal Efficiencies of Sewage Treatment Processes and Ecological Risks Associated with Phenols in Effluents. J. Hazard. Mater. 2012, 217–218, 286–292.pl_PL
dc.referencesLoraine, G.A.; Pettigrove, M.E. Seasonal Variations in Concentrations of Pharmaceuticals and Personal Care Products in Drinking Water and ReclaimedWastewater in Southern California. Environ. Sci. Technol. 2006, 40, 687–695.pl_PL
dc.referencesKasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. Multiresidue Methods for the Analysis of Pharmaceuticals, Personal care Products and Illicit Drugs in SurfaceWater andWastewater by Solid-Phase Extraction and Ultra Performance Liquid Chromatography– Electrospray Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2008, 391, 1293–1308.pl_PL
dc.referencesKasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The Removal of Pharmaceuticals, Personal care Products, Endocrine Disruptors and Illicit Drugs DuringWastewater Treatment and its Impact on the Quality of ReceivingWaters. Water Res. 2009, 43, 363–380.pl_PL
dc.referencesRostkowski, P.; Horwood, J.; Shears, J.A.; Lange, A.; Oladapo, F.O.; Besselink, H.T.; Tyler, C.R.; Hill, E.M. Bioassay-Directed Identification of Novel Antiandrogenic Compounds in Bile of Fish Exposed to Wastewater Effluents. Environ. Sci. Technol. 2011, 45, 10660–10667.pl_PL
dc.referencesDsikowitzky, L.; Sträter, M.; Dwiyitno, D.; Ariyani, F.; Irianto, H.E.; Schwarzbauer, J. First Comprehensive Screening of Lipophilic Organic Contaminants in Surface Waters of the Megacity Jakarta, Indonesia. Mar. Pollut. Bull. 2016, 110, 654–664.pl_PL
dc.referencesDsikowitzky, L.; Hagemann, L.; Dwiyitno; Ariyani, F.; Schwarzbauer, J.; Irianto, H.E. Complex Organic Pollutant Mixtures Originating from Industrial and Municipal Emissions in SurfaceWaters of the Megacity Jakarta—an Example of aWater Pollution Problem in Emerging Economies. Environ. Sci. Pollut. Res. 2017, 24, 27539–27552.pl_PL
dc.referencesKasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The Occurrence of Pharmaceuticals, Personal Care Products, Endocrine Disruptors and Illicit Drugs in Surface Water in South Wales, UK. Water Res. 2008, 42, 3498–3518.pl_PL
dc.referencesGuess, W.L.; Bruch, M. A Review of Available Toxicity Data on the Topical Antimicrobial, Chloroxylenol. J. Toxicol. Cutan. Ocul. Toxicol. 1986, 5, 233–262.pl_PL
dc.referencesCapkin, E.; Ozcelep, T.; Kayis, S.; Altinok, I. Antimicrobial Agents, Triclosan, Chloroxylenol, Methylisothiazolinone and Borax, Used in Cleaning had Genotoxic and Histopathologic Effects on Rainbow Trout. Chemosphere 2017, 182, 720–729.pl_PL
dc.referencesSreevidya, V.S.; Lenz, K.A.; Svoboda, K.R.; Ma, H. Benzalkonium Chloride, Benzethonium Chloride, and Chloroxylenol—Three Replacement Antimicrobials are More Toxic than Triclosan and Triclocarban in Two Model Organisms. Environ. Pollut. 2018, 235, 814–824.pl_PL
dc.referencesXu, L.; Wang, J. Degradation of 4-Chloro-3,5-Dimethylphenol by a Heterogeneous Fenton-Like Reaction Using Nanoscale Zero-Valent Iron Catalysts. Environ. Eng. Sci. 2013, 30, 294–301.pl_PL
dc.referencesSadhukhan, S.; Singha, S.; Sarkar, U. Adsorption of Para Chloro Meta Xylenol (PCMX) in Composite Adsorbent Beds: Parameter Estimation Using Nonlinear Least Square Technique. Chem. Eng. J. 2009, 152, 361–366.pl_PL
dc.referencesSong, S.; Liu, Z.; He, Z.; Li, Y.; Chen, J.; Li, C. Degradation of the Biocide 4-Chloro-3,5-Dimethylphenol in Aqueous Medium with Ozone in Combination with Ultraviolet Irradiation: Operating Conditions Influence and Mechanism. Chemosphere 2009, 77, 1043–1051.pl_PL
dc.referencesLi, W.; Guo, H.; Wang, C.; Zhang, Y.; Cheng, X.; Wang, J.; Yang, B.; Du, E. ROS Reevaluation for Degradation of 4-Chloro-3,5- Dimethylphenol (PCMX) by UV and UV/Persulfate Processes in the Water: Kinetics, Mechanism, DFT Studies and Toxicity Evolution. Chem. Eng. J. 2020, 390, 124610.pl_PL
dc.referencesActivated Persulfate: Kinetics, Mechanisms and Toxicities. Chem. Eng. J. 2019, 368, 553–563.pl_PL
dc.referencesCaracciolo, A.B.; Topp, E.; Grenni, P. Pharmaceuticals in the Environment: Biodegradation and Effects on Natural Microbial Communities. A Review. J. Pharm. Biomed. Anal. 2015, 106, 25–36.pl_PL
dc.referencesBrahma, B.; Sarkar, P.; Sarkar, U. P-Chloro Meta Xylenol (PCMX) Tolerant Bacteria and Their Biodegradation. Int. J. Adv. Sci. Eng. Technol. 2016, 4, 88–91.pl_PL
dc.referencesGhanem, K.M.; Al-Fassi, F.A.; Al-Hazmi, N.M. Optimization of Chloroxylenol Degradation by Aspergillus Niger Using Plackett- Burman Design and Response Surface Methodology. Rom. Biotechnol. Lett. 2013, 11, 15040–15048.pl_PL
dc.referencesThomas, R.E.; Kotchevar, A.T. Comparativein Vitrometabolism of Chloroxylenol, Chlorophene, and Triclosan with Rat, Mouse, and Human Hepatic Microsomes. Toxicol. Environ. Chem. 2010, 92, 1735–1747.pl_PL
dc.referencesKang, C.S.; Kim, H.S. Function Analysis of Chlorophenol Monooxygenase for Chlorophenol Degradation. Adv. Mater. Res. 2014, 1073–1076, 700–703.pl_PL
dc.referencesKang, C.; Yang, J.W.; Cho,W.; Kwak, S.; Park, S.; Lim, Y.; Choe, J.W.; Kim, H.S. Oxidative Biodegradation of 4-Chlorophenol by Using Recombinant Monooxygenase Cloned and Overexpressed from Arthrobacter Chlorophenolicus A6. Bioresour. Technol. 2017, 240, 123–129.pl_PL
dc.referencesLehning, A.; Fock, U.; Wittich, R.; Timmis, K.N.; Pieper, D.H. Metabolism of Chlorotoluenes by Burkholderia sp. Strain PS12 and Toluene Dioxygenase of Pseudomonas putida F1: Evidence for Monooxygenation by Toluene and Chlorobenzene Dioxygenases. Appl. Environ. Microbiol. 1997, 63, 1974–1979.pl_PL
dc.referencesDuc, H.D. Degradation of chlorotoluenes by Comamonas testosterone KT5. Appl. Biol. Chem. 2017, 60, 457–465.pl_PL
dc.referencesNguyen, O.T.; Ha, D.D. Degradation of Chlorotoluenes and Chlorobenzenes by the Dual-Species Biofilm of Comamonas Testosteroni Strain KT5 and Bacillus Subtilis Strain DKT. Ann. Microbiol. 2019, 69, 267–277.pl_PL
dc.referencesDobslaw, D.; Engesser, K. Degradation of Toluene by Ortho Cleavage Enzymes in B Urkholderia Fungorum FLU 100. Microb. Biotechnol. 2014, 8, 143–154.pl_PL
dc.referencesDobslaw, D.; Engesser, K.-H. Degradation of 2-Chlorotoluene by Rhodococcus sp. OCT 10. Appl. Microbiol. Biotechnol. 2012, 93, 2205–2214.pl_PL
dc.referencesFarrell, A.; Quilty, B. Degradation of Mono-Chlorophenols by a Mixed Microbial Community via a Meta-Cleavage Pathway. Biodegradation 1999, 10, 353–362.pl_PL
dc.referencesArora, P.K.; Bae, H. Bacterial Degradation of Chlorophenols and Their Derivatives. Microb. Cell Factories 2014, 13, 31.pl_PL
dc.referencesMtibaà, R.; Ezzanad, A.; Aranda, E.; Pozo, C.; Ghariani, B.; Moraga, J.; Nasri, M.; Cantoral, J.M.; Garrido, C.; Mechichi, T. Biodegradation and Toxicity Reduction of Nonylphenol, 4-Tert-Octylphenol and 2,4-Dichlorophenol by the Ascomycetous Fungus Thielavia sp HJ22: Identification of Fungal Metabolites and Proposal of a Putative Pathway. Sci. Total. Environ. 2020, 708, 135129.pl_PL
dc.referencesKordon, K.; Mikolasch, A.; Schauer, F. Oxidative Dehalogenation of Chlorinated Hydroxybiphenyls by Laccases of White-Rot Fungi. Int. Biodeterior. Biodegrad. 2010, 64, 203–209.pl_PL
dc.referencesGomaa, M.N.; Almaghrabi, O.A.; Elshoura, A.A.; Soliman, A.M.; Gharieb, M.M. Novel Mixture of Chloroxylenol and Copper alters Candida Albicans Biofilm Formation, Biochemical Characteristics, and Morphological Features. J. Taibah Univ. Sci. 2020, 14, 889–895.pl_PL
dc.referencesMohammed, S.R.; Al-Jibouri, M. Isolation and Identification of Fungi from Two Hospitals in Baghdad City and Effect of Disin-Fectants on some Fungi. IRAQI J. Sci. 2015, 56, 673–682.pl_PL
dc.referencesZhou, Y.; Cheng, G.; Chen, K.; Lu, J.; Lei, J.; Pu, S. Adsorptive Removal of Bisphenol A, Chloroxylenol, and Carbamazepine from Water Using a Novel -Cyclodextrin Polymer. Ecotoxicol. Environ. Saf. 2019, 170, 278–285.pl_PL
dc.referencesChoi, D.; Oh, S. Removal of Chloroxylenol Disinfectant by an Activated Sludge Microbial Community. Microbes Environ. 2019, 34, 129–135.pl_PL
dc.referencesMori, T.; Sudo, S.; Kawagishi, H.; Hirai, H. Biodegradation of Diuron in Artificially Contaminated Water and Seawater by Wood Colonized with the White-Rot Fungus Trametes Versicolor. J. Wood Sci. 2018, 64, 690–696.pl_PL
dc.referencesZawadzka, K.; Felczak, A.; Szemraj, J.; Lisowska, K. Novel Metabolites from Cunninghamella Elegans as a Microbial Model of the -Blocker Carvedilol Biotransformation in the Environment. Int. Biodeterior. Biodegrad. 2018, 127, 227–235.pl_PL
dc.referencesPalmer-Brown, W.; Souza, P.L.D.M.; Murphy, C.D. Cyhalothrin Biodegradation in Cunninghamella Elegans. Environ. Sci. Pollut. Res. 2019, 26, 1414–1421.pl_PL
dc.referencesMallak, A.M.; Lakzian, A.; Khodaverdi, E.; Haghnia, G.H.; Mahmoudi, S. Effect of Pleurotus Ostreatus and Trametes Versicolor on Triclosan Biodegradation and Activity of Laccase and Manganese Peroxidase Enzymes. Microb. Pathog. 2020, 149, 104473.pl_PL
dc.referencesGhanem, K.M.; Elahwany, A.; Farag, A.; Ghanem, D. Optimization the Degradation of Chloroxylenol by Free and Immobilized Klebsiella Pneumoniae D2. Int. J. Curr. Adv. Res. 2017, 6, 7082–7091.pl_PL
dc.referencesChen, M.; Zeng, G.; Lai, C.; Li, J.; Xu, P.;Wu, H. Molecular Basis of Laccase Bound to Lignin: Insight from Comparative Studies on the Interaction of Trametes Versicolor Laccase with Various Lignin Model Compounds. RSC Adv. 2015, 5, 52307–52313.pl_PL
dc.referencesHaugland, J.O.; Kinney, K.A.; Johnson,W.H., Jr.; Camino, M.M.A.; Whitman, C.P.; Lawler, D.F. Laccase Removal of 2-Chlorophenol and Sulfamethoxazole in Municipal Wastewater. Water Environ. Res. 2019, 91, 281–291.pl_PL
dc.referencesMougin, C.; Kollmann, A.; Jolivalt, C. Enhanced Production of Laccase in the Fungus Trametes Versicolor by the Addition of Xenobiotics. Biotechnol. Lett. 2002, 24, 139–142.pl_PL
dc.referencesYang, S.; Hai, F.I.; Nghiem, L.D.; Nguyen, L.N.; Roddick, F.; Price, W.E. Removal of Bisphenol A and Diclofenac by a Novel Fungal Membrane Bioreactor Operated Under Non-Sterile Conditions. Int. Biodeterior. Biodegrad. 2013, 85, 483–490.pl_PL
dc.referencesNavada, K.K.; Kulal, A. Enzymatic Degradation of Chloramphenicol by Laccase from Trametes Hirsuta and Comparison Among Mediators. Int. Biodeterior. Biodegrad. 2019, 138, 63–69.pl_PL
dc.referencesZawadzka, K.; Bernat, P.; Felczak, A.; Lisowska, K. Microbial Detoxification of Carvedilol, a -Adrenergic Antagonist, by the Filamentous Fungus Cunninghamella Echinulata. Chemosphere 2017, 183, 18–26.pl_PL
dc.referencesNowak, M.; Zawadzka, K.; Lisowska, K. Occurrence of Methylisothiazolinone in Water and Soil Samples in Poland and its Biodegradation by Phanerochaete Chrysosporium. Chemosphere 2020, 254, 126723.pl_PL
dc.referencesKrupi ´ nski, M.; Janicki, T.; Pałecz, B.; Długo´ nski, J. Biodegradation and Utilization of 4-n-Nonylphenol by Aspergillus Versicolor as a Sole Carbon and Energy Source. J. Hazard. Mater. 2014, 280, 678–684.pl_PL
dc.referencesNowak, M.; Sobon´ , A.; Litwin, A.; Róz˙alska, S. 4-n-Nonylphenol Degradation by the genus Metarhizium with Cytochrome P450 Involvement. Chemosphere 2019, 220, 324–334.pl_PL
dc.referencesWiner, J.; Jung, C.K.S.; Shackel, I.;Williams, P. Development and Validation of Real-Time Quantitative Reverse Transcriptase– Polymerase Chain Reaction for Monitoring Gene Expression in Cardiac Myocytesin Vitro. Anal. Biochem. 1999, 270, 41–49.pl_PL
dc.referencesGóralczyk-Bi ´nkowska, A.; Jasi ´ nska, A.; Długo´ nski, A.; Płoci ´ nski, P.; Długo´ nski, J. Laccase Activity of the Ascomycete Fungus Nectriella Pironii and Innovative Strategies for its Production on Leaf Litter of an Urban Park. PLoS ONE 2020, 15, e0231453.pl_PL
dc.contributor.authorEmailaleksandra.goralczyk@biol.uni.lodz.plpl_PL
dc.identifier.doi10.3390/ijms22094360
dc.disciplinenauki biologicznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe