Pokaż uproszczony rekord

dc.contributor.authorGorniak, Leslaw
dc.contributor.authorCeremuga, Michał
dc.contributor.authorStela, Maksymilian
dc.contributor.authorJanik, Edyta
dc.contributor.authorSynowiec, Ewelina
dc.contributor.authorŚliwiński, Tomasz
dc.contributor.authorSitarek, Przemysław
dc.contributor.authorSaluk-Bijak, Joanna
dc.contributor.authorBijak, Michal
dc.date.accessioned2021-09-30T07:43:52Z
dc.date.available2021-09-30T07:43:52Z
dc.date.issued2020
dc.identifier.citationCeremuga, M.; Stela, M.; Janik, E.; Gorniak, L.; Synowiec, E.; Sliwinski, T.; Sitarek, P.; Saluk-Bijak, J.; Bijak, M. Melittin—A Natural Peptide from Bee Venom Which Induces Apoptosis in Human Leukaemia Cells. Biomolecules 2020, 10, 247. https://doi.org/10.3390/biom10020247pl_PL
dc.identifier.issn2218-273X
dc.identifier.urihttp://hdl.handle.net/11089/39248
dc.description.abstract: Bee venom is a very complex mixture produced and secreted by the honeybee (Apis mellifera). Melittin is a major component of bee venom that accounts for about 52% of its dry mass. A vast number of studies have been dedicated to the effects of melittin’s regulation of apoptosis and to the factors that induce apoptosis in various types of cancer such as breast, ovarian, prostate, lung. The latest evidence indicates its potential as a therapeutic agent in the treatment of leukaemia. The aim of our present study is to evaluate melittin’s ability to induce apoptosis in leukaemia cell lines of different origin acute lymphoblastic leukaemia (CCRF-CEM) and chronic myelogenous leukaemia (K-562). We demonstrated that melittin strongly reduced cell viability in both leukaemia cell lines but not in physiological peripheral blood mononuclear cells (PMBCs). Subsequent estimated parameters (mitochondrial membrane potential, Annexin V binding and Caspases 3/7 activity) clearly demonstrated that melittin induced apoptosis in leukaemia cells. This is a very important step for research into the development of new potential anti-leukaemia as well as anticancer therapies. Further analyses on the molecular level have been also planned (analysis of proapoptotic genes expression and DNA damages) for our next research project, which will also focus on melittin.pl_PL
dc.language.isoenpl_PL
dc.publisherMDPIpl_PL
dc.relation.ispartofseriesBiomolecules;10(2), 247
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectmelittinpl_PL
dc.subjectbee venompl_PL
dc.subjectapoptosispl_PL
dc.subjectleukaemiapl_PL
dc.titleMelittin—A Natural Peptide from Bee Venom Which Induces Apoptosis in Human Leukaemia Cellspl_PL
dc.typeArticlepl_PL
dc.page.number14pl_PL
dc.contributor.authorAffiliationBiohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationMilitary Institute of Armament Technology, Prymasa Stefana Wyszyńskiego 7, 05-220 Zielonka, Polandpl_PL
dc.contributor.authorAffiliationCBRN Reconnaissance and Decontamination Department, Military Institute of Chemistry and Radiometry, Antoniego Chrusciela “Montera” 105, 00-910 Warsaw, Polandpl_PL
dc.contributor.authorAffiliationBiohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationLaboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationLaboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationBiohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Polandpl_PL
dc.referencesZhang, S.; Liu, Y.; Ye, Y.; Wang, X.R.; Lin, L.T.; Xiao, L.Y.; Zhou, P.; Shi, G.X.; Liu, C.Z. Bee venom therapy: Potential mechanisms and therapeutic applications. Toxicon 2018, 148, 64–73.pl_PL
dc.referencesSon, D.J.; Lee, J.W.; Lee, Y.H.; Song, H.S.; Lee, C.K.; Hong, J.T. Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol. Ther. 2007, 115, 246–270.pl_PL
dc.referencesLi, J.; Ke, T.; He, C.; Cao, W.; Wei, M.; Zhang, L.; Zhang, J.X.; Wang, W.; Ma, J.; Wang, Z.R.; et al. The anti-arthritic effects of synthetic melittin on the complete Freund’s adjuvant-induced rheumatoid arthritis model in rats. Am. J. Chin. Med. 2010, 38, 1039–1049.pl_PL
dc.referencesEl Gendy, A.; Saber, M.; Daoud, E.; Abdel-Wahhab, K.; el-Rahman, E.; Hegaz, A. Role of bee Venom Acupuncture in improving pain and life quality in Egyptian Chronic Low Back Pain patients. J. Appl. Pharm. Sci. 2017, 7, 168–174.pl_PL
dc.referencesRady, I.; Siddiqui, I.A.; Rady, M.; Mukhtar, H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett. 2017, 402, 16–31.pl_PL
dc.referencesAn, H.J.; Kim, J.Y.; Kim, W.H.; Gwon, M.G.; Gu, H.M.; Jeon, M.J.; Han, S.M.; Pak, S.C.; Lee, C.K.; Park, I.S.; et al. Therapeutic effects of bee venom and its major component, melittin, on atopic dermatitis in vivo and in vitro. Br. J. Pharmacol. 2018, 175, 4310–4324.pl_PL
dc.referencesKreil, G. Structure and Multistep Activation of the Precursors of Peptides from Honeybee Venom Glands and Frog Skin. Curr. Top. Cell. Regul. 1984, 24, 261–272pl_PL
dc.referencesBrewczy ´nski, Z.; Anczyk, E.; Kasznica-Kocot, J.; Hom, A.; D ˛abkowska, B.; Muszy ´nska-Graca, M.; Pypno, B.; Skiba, M.; Złotkowska, R. Znajomo´s´c biologii błonkówek ze szczególnym uwzgl ˛ednieniem immunochemii ich jadów ma istotne znaczenie we współczesnej medycynie ´srodowiskowej. Medycyna Srodowiskowa ´ 2010, 13, 99–111.pl_PL
dc.referencesTerwilliger, T.C.; Eisenberg, D. The structure of melittin. II. Interpretation of the structure. J. Biol. Chem. 1982, 257, 6016–6022.pl_PL
dc.referencesTerwilliger, T.C.; Weissman, L.; Eisenberg, D. The structure of melittin in the form I crystals and its implication for melittin’s lytic and surface activities. Biophys. J. 1982, 37, 353–361.pl_PL
dc.referencesRaghuraman, H.; Chattopadhyay, A. Melittin: A membrane-active peptide with diverse functions. Biosci. Rep. 2007, 27, 189–223.pl_PL
dc.referencesOthon, C.M.; Kwon, O.H.; Lin, M.M.; Zewail, A.H. Solvation in protein (un)folding of melittin tetramer-monomer transition. Proc. Natl. Acad. Sci. USA 2009, 106, 12593–12598.pl_PL
dc.referencesPerekalin, D.S.; Novikov, V.V.; Pavlov, A.A.; Ivanov, I.A.; Anisimova, N.Y.; Kopylov, A.N.; Volkov, D.S.; Seregina, I.F.; Bolshov, M.A.; Kudinov, A.R. Selective ruthenium labeling of the tryptophan residue in the bee venom Peptide melittin. Chemistry 2015, 21, 4923–4925.pl_PL
dc.referencesGuex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 1997, 18, 2714–2723.pl_PL
dc.referencesHait, W.N.; Grais, L.; Benz, C.; Cadman, E.C. Inhibition of growth of leukemic cells by inhibitors of calmodulin: Phenothiazines and melittin. Cancer Chemother. Pharmacol. 1985, 14, 202–205.pl_PL
dc.referencesAbd-Elhakim, Y.M.; Khalil, S.R.; Awad, A.; Al-Ayadhi, L.Y. Combined cytogenotoxic effects of bee venom and bleomycin on rat lymphocytes: An in vitro study. Biomed. Res. Int. 2014, 2014, 173903.pl_PL
dc.referencesKoumanov, K.; Momchilova, A.; Wolf, C. Bimodal regulatory effect of melittin and phospholipase A2-activating protein on human type II secretory phospholipase A2. Cell Boil. Int. 2003, 27, 871–877.pl_PL
dc.referencesFennell, J.F.; Shipman, W.H.; Cole, L.J. Antibacterial action of melittin, a polypeptide from bee venom. Proc. Soc. Exp. Biol. Med. 1968, 127, 707–710.pl_PL
dc.referencesZhang, S.; Chen, Z. Melittin exerts an antitumor effect on non-small cell lung cancer cells. Mol. Med. Rep. 2017, 16, 3581–3586.pl_PL
dc.referencesPark, J.H.; Jeong, Y.J.; Park, K.K.; Cho, H.J.; Chung, I.K.; Min, K.S.; Kim, M.; Lee, K.G.; Yeo, J.H.; Chang, Y.C. Melittin suppresses PMA-induced tumor cell invasion by inhibiting NF-kappaB and AP-1-dependent MMP-9 expression. Mol. Cells 2010, 29, 209–215.pl_PL
dc.referencesPark, M.H.; Choi, M.S.; Kwak, D.H.; Oh, K.W.; Yoon, D.Y.; Han, S.B.; Song, H.S.; Song, M.J.; Hong, J.T. Anti-cancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of NF-κB. Prostate 2011, 71, 801–812.pl_PL
dc.referencesJo, M.; Park, M.H.; Kollipara, P.S.; An, B.J.; Song, H.S.; Han, S.B.; Kim, J.H.; Song, M.J.; Hong, J.T. Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway. Toxicol. Appl. Pharmacol. 2012, 258, 72–81.pl_PL
dc.referencesYang, Z.L.; Ke, Y.Q.; Xu, R.X.; Peng, P. Melittin inhibits proliferation and induces apoptosis of malignant human glioma cells. Nan Fang Yi Ke Da Xue Xue Bao 2007, 27, 1775–1777.pl_PL
dc.referencesLi, B.; Gu, W.; Zhang, C.; Huang, X.Q.; Han, K.Q.; Ling, C.Q. Growth arrest and apoptosis of the human hepatocellular carcinoma cell line BEL-7402 induced by melittin. Onkologie 2006, 29, 367–371.pl_PL
dc.referencesZhang, H.; Zhao, B.; Huang, C.; Meng, X.M.; Bian, E.B.; Li, J. Melittin restores PTEN expression by down-regulating HDAC2 in human hepatocelluar carcinoma HepG2 cells. PLoS ONE 2014, 9, e95520.pl_PL
dc.referencesLiu, S.; Yu, M.; He, Y.; Xiao, L.; Wang, F.; Song, C.; Sun, S.; Ling, C.; Xu, Z. Melittin prevents liver cancer cell metastasis through inhibition of the Rac1-dependent pathway. Hepatology 2008, 47, 1964–1973.pl_PL
dc.referencesJeong, Y.J.; Choi, Y.; Shin, J.M.; Cho, H.J.; Kang, J.H.; Park, K.K.; Choe, J.Y.; Bae, Y.S.; Han, S.M.; Kim, C.H.; et al. Melittin suppresses EGF-induced cell motility and invasion by inhibiting PI3K/Akt/mTOR signaling pathway in breast cancer cells. Food Chem. Toxicol. 2014, 68, 218–225.pl_PL
dc.referencesShin, J.M.; Jeong, Y.J.; Cho, H.J.; Park, K.K.; Chung, I.K.; Lee, I.K.; Kwak, J.Y.; Chang, H.W.; Kim, C.H.; Moon, S.K.; et al. Melittin suppresses HIF-1α/VEGF expression through inhibition of ERK and mTOR/p70S6K pathway in human cervical carcinoma cells. PLoS ONE 2013, 8, e69380.pl_PL
dc.referencesChen, Y.Q.; Zhu, Z.A.; Hao, Y.Q.; Dai, K.R.; Zhang, C. Effect of melittin on apoptosis and necrosis of U2 OS cells. Zhong Xi Yi Jie He Xue Bao 2004, 2, 208–209.pl_PL
dc.referencesTu, W.C.; Wu, C.C.; Hsieh, H.L.; Chen, C.Y.; Hsu, S.L. Honeybee venom induces calcium-dependent but caspase-independent apoptotic cell death in human melanoma A2058 cells. Toxicon 2008, 52, 318–329.pl_PL
dc.referencesYalcin, M.; Aydin, C.; Savci, V. Cardiovascular effect of peripheral injected melittin in normotensive conscious rats: Mediation of the central cholinergic system. Prostaglandins Leukot Essent Fatty Acids 2009, 81, 341–347.pl_PL
dc.referencesSon, D.J.; Ha, S.J.; Song, H.S.; Lim, Y.; Yun, Y.P.; Lee, J.W.; Moon, D.C.; Park, Y.H.; Park, B.S.; Song, M.J.; et al. Melittin inhibits vascular smooth muscle cell proliferation through induction of apoptosis via suppression of nuclear factor-kappaB and Akt activation and enhancement of apoptotic protein expression. J. Pharmacol. Exp. Ther. 2006, 317, 627–634.pl_PL
dc.referencesBijak, M.; Synowiec, E.; Sitarek, P.; Sliwi ´nski, T.; Saluk-Bijak, J. Evaluation of the Cytotoxicity and Genotoxicity of Flavonolignans in Different Cellular Models. Nutrients 2017, 9, 1356.pl_PL
dc.referencesSitarek, P.; Synowiec, E.; Kowalczyk, T.; Sliwi ´nski, T.; Skała, E. An In Vitro Estimation of the Cytotoxicity and ´ Genotoxicity of Root Extract from. Molecules 2018, 23, 2049.pl_PL
dc.referencesBijak, M.; Kolodziejczyk-Czepas, J.; Ponczek, M.B.; Saluk, J.; Nowak, P. Protective effects of grape seed extract against oxidative and nitrative damage of plasma proteins. Int. J. Biol. Macromol. 2012, 51, 183–187.pl_PL
dc.referencesZbikowska, H.M.; Antosik, A.; Szejk, M.; Bijak, M.; Olejnik, A.K.; Saluk, J.; Nowak, P. Does quercetin protect human red blood cell membranes against γ-irradiation? Redox Rep. 2014, 19, 65–71.pl_PL
dc.references. Bijak, M.; Saluk, J.; Antosik, A.; Ponczek, M.B.; Zbikowska, H.M.; Borowiecka, M.; Nowak, P. Aronia melanocarpa as a protector against nitration of fibrinogen. Int. J. Biol. Macromol. 2013, 55, 264–268.pl_PL
dc.referencesPui, C.H.; Jeha, S. New therapeutic strategies for the treatment of acute lymphoblastic leukaemia. Nat. Rev. Drug Discov. 2007, 6, 149–165.pl_PL
dc.referencesCartledge Wolf, D.M.; Langhans, S.A. Moving Myeloid Leukemia Drug Discovery Into the Third Dimension. Front. Pediatr. 2019, 7, 314.pl_PL
dc.referencesSiegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34.pl_PL
dc.referencesTerwilliger, T.; Abdul-Hay, M. Acute lymphoblastic leukemia: A comprehensive review and 2017 update. Blood Cancer J. 2017, 7, e577.pl_PL
dc.referencesJabbour, E.; O’Brien, S.; Konopleva, M.; Kantarjian, H. New insights into the pathophysiology and therapy of adult acute lymphoblastic leukemia. Cancer 2015, 121, 2517–2528.pl_PL
dc.referencesFlis, S.; Chojnacki, T. Chronic myelogenous leukemia, a still unsolved problem: Pitfalls and new therapeutic possibilities. Drug Des. Dev. Ther. 2019, 13, 825–843.pl_PL
dc.referencesJabbour, E.; Kantarjian, H. Chronic myeloid leukemia: 2018 update on diagnosis, therapy and monitoring. Am. J. Hematol. 2018, 93, 442–459.pl_PL
dc.referencesSladowska, K.; Handzlik, J.; Kie´c-Kononowicz, K.; Mazur, L. ´ In vitro cytotoxic activity evaluation of phenytoin derivatives against human leukemia cells. Indian J. Exp. Biol. 2016, 54, 553–559.pl_PL
dc.referencesGalluzzi, L.; Bravo-San Pedro, J.M.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Alnemri, E.S.; Altucci, L.; Andrews, D.; Annicchiarico-Petruzzelli, M.; et al. Essential versus accessory aspects of cell death: Recommendations of the NCCD 2015. Cell Death Differ. 2015, 22, 58–73.pl_PL
dc.referencesWatala, C.; Gwo´zdzi ´nski, K. Melittin-induced alterations in dynamic properties of human red blood cell membranes. Chem. Biol. Interact. 1992, 82, 135–149.pl_PL
dc.referencesPanina, S.B.; Baran, N.; Brasil da Costa, F.H.; Konopleva, M.; Kirienko, N.V. A mechanism for increased sensitivity of acute myeloid leukemia to mitotoxic drugs. Cell Death Dis. 2019, 10, 617.pl_PL
dc.referencesYun, H.D.; Schirm, D.K.; Felices, M.; Miller, J.S.; Eckfeldt, C.E. Dinaciclib enhances natural killer cell cytotoxicity against acute myelogenous leukemia. Blood Adv. 2019, 3, 2448–2452.pl_PL
dc.referencesLyu, C.; Fang, F.; Li, B. Anti-Tumor Effects of Melittin and Its Potential Applications in Clinic. Curr. Protein Pept. Sci. 2019, 20, 240–250.pl_PL
dc.referencesChu, S.T.; Cheng, H.H.; Huang, C.J.; Chang, H.C.; Chi, C.C.; Su, H.H.; Hsu, S.S.; Wang, J.L.; Chen, I.S.; Liu, S.I.; et al. Phospholipase A2-independent Ca2+ entry and subsequent apoptosis induced by melittin in human MG63 osteosarcoma cells. Life Sci. 2007, 80, 364–369.pl_PL
dc.referencesRyu, J.S.; Jang, B.H.; Jo, Y.S.; Kim, S.J.; Eom, T.I.; Kim, M.C.; Ko, H.J.; Sim, S.S. The effect of acteoside on intracellular Ca(2+) mobilization and phospholipase C activity in RBL-2H3 cells stimulated by melittin. Arch. Pharm. Res. 2014, 37, 239–244.pl_PL
dc.referencesElmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516.pl_PL
dc.referencesBratton, D.L.; Fadok, V.A.; Richter, D.A.; Kailey, J.M.; Guthrie, L.A.; Henson, P.M. Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J. Biol. Chem. 1997, 272, 26159–26165.pl_PL
dc.referencesAubry, J.P.; Blaecke, A.; Lecoanet-Henchoz, S.; Jeannin, P.; Herbault, N.; Caron, G.; Moine, V.; Bonnefoy, J.Y. Annexin V used for measuring apoptosis in the early events of cellular cytotoxicity. Cytometry 1999, 37, 197–204.pl_PL
dc.referencesSynowiec, E.; Hoser, G.; Wojcik, K.; Pawlowska, E.; Skorski, T.; Błasiak, J. UV Differentially Induces Oxidative Stress, DNA Damage and Apoptosis in BCR-ABL1-Positive Cells Sensitive and Resistant to Imatinib. Int. J. Mol. Sci. 2015, 16, 18111–18128.pl_PL
dc.referencesPfeffer, C.M.; Singh, A.T.K. Apoptosis: A Target for Anticancer Therapy. Int. J. Mol. Sci. 2018, 19, 448.pl_PL
dc.referencesLy, J.D.; Grubb, D.R.; Lawen, A. The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis 2003, 8, 115–128.pl_PL
dc.referencesLee, J.; Lee, D.G. Melittin triggers apoptosis in Candida albicans through the reactive oxygen species-mediated mitochondria/caspase-dependent pathway. FEMS Microbiol. Lett. 2014, 355, 36–42.pl_PL
dc.identifier.doihttps://doi.org/10.3390/biom10020247
dc.disciplinenauki biologicznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe