Pokaż uproszczony rekord

dc.contributor.authorGalka, Mariusz
dc.contributor.authorLamentowicz, Mariusz
dc.contributor.authorMarcisz, Katarzyna
dc.contributor.authorKołaczek, Piotr
dc.contributor.authorGuzowski, Piotr
dc.contributor.authorDiaconu, Andrei-Cosmin
dc.date.accessioned2021-09-22T06:08:47Z
dc.date.available2021-09-22T06:08:47Z
dc.date.issued2020
dc.identifier.citationLamentowicz, M., Marcisz, K., Guzowski, P. et al. How Joannites’ economy eradicated primeval forest and created anthroecosystems in medieval Central Europe. Sci Rep 10, 18775 (2020). https://doi.org/10.1038/s41598-020-75692-4pl_PL
dc.identifier.urihttp://hdl.handle.net/11089/39120
dc.description.abstractDuring European states’ development, various past societies utilized natural resources, but their impact was not uniformly spatially and temporally distributed. Considerable changes resulted in landscape fragmentation, especially during the Middle Ages. Changes in state advances that affected the local economy significantly drove trajectories of ecosystems’ development. The legacy of major changes from pristine forest to farming is visible in natural archives as novel ecosystems. Here, we present a high-resolution densely dated multi-proxy study covering the last 1500 years from a peatland located in CE Europe. The economic activity of medieval societies was highly modified by new rulers—the Joannites (the Order of St. John of Jerusalem, Knights Hospitaller). We studied the record of these directorial changes noted in the peat profile. Our research revealed a rapid critical land-use transition in the late Middle Ages and its consequences on the peatland ecosystem. The shift from the virgin forest with regular local fires to agriculture correlates well with the raising of local economy and deforestations. Along with the emerging openness, the wetland switched from alkaline wet fen state to acidic, drier Sphagnum-dominated peatland. Our data show how closely the ecological state of wetlands relates to forest microclimate. We identified a significant impact of the Joannites who used the novel farming organization. Our results revealed the surprisingly fast rate of how feudal economy eliminated pristine nature from the studied area and created novel anthroecosystems.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Naturepl_PL
dc.relation.ispartofseriesScientific Reports;10, 18775
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectPalaeoecologypl_PL
dc.subjectWetlands ecologypl_PL
dc.titleHow Joannites’ economy eradicated primeval forest and created anthroecosystems in medieval Central Europepl_PL
dc.typeArticlepl_PL
dc.page.number13pl_PL
dc.contributor.authorAffiliationDepartment of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Str. 90‑237, Lodz, Poland.pl_PL
dc.contributor.authorAffiliationClimate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland.pl_PL
dc.contributor.authorAffiliationClimate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland.pl_PL
dc.contributor.authorAffiliationClimate Change Ecology Research Unit, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, Poznań, Poland.pl_PL
dc.contributor.authorAffiliationFaculty of History and International Relations, University of Bialystok, 15‑420, Bialystok, Poland.pl_PL
dc.contributor.authorAffiliationDepartment of Geology, Babes-Bolyai University, 400084 Cluj‑Napoca, Romania.pl_PL
dc.identifier.eissn2045-2322
dc.referencesCarpenter, S. R. & Scheffer, M. Critical transitions and regime shifts in ecosystems: consolidating recent advances. New Models for Ecosystem Dynamics and Restoration 22–32 (2009).pl_PL
dc.referencesTaubert, F. et al. Global patterns of tropical forest fragmentation. Nature 554, 519–522 (2018).pl_PL
dc.referencesGeldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl. Acad. Sci. USA 116, 23209–23215 (2019).pl_PL
dc.referencesEllis, E. C. Anthropogenic transformation of the terrestrial biosphere. Philos. Trans. A Math. Phys. Eng. Sci. 369, 1010–1035 (2011).pl_PL
dc.referencesStephens, L. et al. Archaeological assessment reveals Earth’s early transformation through land use. Science 365, 897–902 (2019).pl_PL
dc.referencesMarchant, R. Archaeological assessment reveals Earth’s early transformation through land use. Science 365, 897–902 (2019).pl_PL
dc.referencesKaplan, J. O., Krumhardt, K. M. & Zimmermann, N. The prehistoric and preindustrial deforestation of Europe. Quatern. Sci. Rev. 28, 3016–3034 (2009).pl_PL
dc.referencesCzerniak, L. & Pyzel, J. Neolithic farmers and the introduction of pottery in the south Baltic. Bericht Römisch-Germanischen Kommission 89, 347–360 (2011).pl_PL
dc.referencesWillis, K. J., Gillson, L. & Brncic, T. M. How, “virgin” is virgin rainforest?. Science 304, 402–403 (2004).pl_PL
dc.referencesSeddon, A. W. R. What do we mean by regime shift? Distinguishing between extrinsic and intrinsic forcing in paleoecological data. Past Glob. Changes Mag. 25, 94–95 (2017).pl_PL
dc.referencesLoughlin, N. J. D., Gosling, W. D., Mothes, P. & Montoya, E. Ecological consequences of post-Columbian indigenous depopulation in the Andean-Amazonian corridor. Nat. Ecol. Evol. 2, 1233–1236 (2018).pl_PL
dc.referencesMoreno-Mateos, D. et al. Anthropogenic ecosystem disturbance and the recovery debt. Nat. Commun. 8, 14163 (2017).pl_PL
dc.referencesLamentowicz, M. et al. Always on the tipping point—a search for signals of past societies and related peatland ecosystem critical transitions during the last 6500 years in N Poland. Quatern. Sci. Rev. 225, 105954 (2019).pl_PL
dc.referencesRalska-Jasiewiczowa, M. et al. Late Glacial and Holocene history of vegetation in Poland based on isopollen maps (W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, 2004).pl_PL
dc.referencesClifford, M. J. & Booth, R. K. Late-holocene drought and fire drove a widespread change in forest community composition in eastern North America. Holocene 25, 1102–1110 (2015).pl_PL
dc.referencesDavies, L. J. et al. High-resolution age modelling of peat bogs from northern Alberta, Canada, using pre- and post-bomb 14 C, 210 Pb and historical cryptotephra. Quat. Geochronol. 47, 138–162 (2018).pl_PL
dc.referencesKołaczek, P., Karpińska-Kołaczek, M., Marcisz, K., Gałka, M. & Lamentowicz, M. Palaeohydrology and the human impact on one of the largest raised bogs complex in the Western Carpathians (Central Europe) during the last two millennia. Holocene 28, 595–608 (2018).pl_PL
dc.referencesMarcisz, K. et al. Long-term hydrological dynamics and fire history over the last 2000 years in CE Europe reconstructed from a high-resolution peat archive. Quatern. Sci. Rev. 112, 138–152 (2015).pl_PL
dc.referencesHildebrandt-Radke, I. & Makohonienko, M. Krajobraz kulturowy Wielkopolski w pradziejach i czasach historycznych: wprowadzenie. Landform Anal. 16, 17–19 (2011).pl_PL
dc.referencesMakohonienko, M. Przyrodnicza historia Gniezna (Homini, Bydgoszcz-Poznań, 2000).pl_PL
dc.referencesBrown, A. & Pluskowski, A. Detecting the environmental impact of the Baltic Crusades on a late-medieval (13th–15th century) frontier landscape: palynological analysis from Malbork Castle and hinterland, Northern Poland. J. Archaeol. Sci. 38, 1957–1966 (2011).pl_PL
dc.referencesStivrins, N. et al. Palaeoenvironmental evidence for the impact of the crusades on the local and regional environment of medieval (13th-16th century) northern Latvia, eastern Baltic. The Holocene 1–10 (2015).pl_PL
dc.referencesWacnik, A. et al. Determining the responses of vegetation to natural processes and human impacts in north-eastern Poland during the last millennium: combined pollen, geochemical and historical data. Veg. Hist. Archaeobot. 25, 479–498 (2016).pl_PL
dc.referencesWoodward, C., Shulmeister, J., Larsen, J., Jacobsen, G. E. & Zawadzki, A. Landscape hydrology The hydrological legacy of deforestation on global wetlands. Science 346, 844–847 (2014).pl_PL
dc.referencesColombaroli, D. & Gavin, D. G. Highly episodic fire and erosion regime over the past 2,000 y in the Siskiyou Mountains, Oregon. Proc. Natl. Acad. Sci. 107, 18909–18914 (2010).pl_PL
dc.referencesBonn, A., Allott, T., Evans, M., Joosten, H. & Stoneman, R. Peatland Restoration and Ecosystem Services: Science, Policy and Practice (Cambridge University Press, Cambridge, 2016).pl_PL
dc.referencesIreland, A. W. & Booth, R. K. Upland deforestation triggered an ecosystem state-shift in a kettle peatland. J. Ecol. 100, 586–596 (2012).pl_PL
dc.referencesJoosten, H., Tanneberger, F. & Moen, A. Mires and peatlands in Europe “Stuttgart, Germany”, 2017).pl_PL
dc.referencesSwindles, G. T. et al. Widespread drying of European peatlands in recent centuries. Nat. Geosci. 12, 922–928 (2019).pl_PL
dc.referencesMarcisz, K., Kołaczek, P., Gałka, M., Diaconu, A.-C. & Lamentowicz, M. Exceptional hydrological stability of a Sphagnum-dominated peatland over the late Holocene. Quatern. Sci. Rev. 231, 106180 (2020).pl_PL
dc.referencesPage, S. E. & Baird, A. J. Peatlands and global change: response and resilience. Annu. Rev. Environ. Resour. 41, 35–57 (2016).pl_PL
dc.referencesPoppick, L. Resilient Peatlands Keep Carbon Bogged Down. Eos 100, (2019).pl_PL
dc.referencesGorham, E. & Rochefort, L. Peatland restoration: A brief assessment with special reference to Sphagnum bogs. Wetl. Ecol. Manag. 11, 109–119 (2003).pl_PL
dc.referencesCalder, W. J. & Shuman, B. Detecting past changes in vegetation resilience in the context of a changing climate. Biol. Lett. 15, 20180768 (2019).pl_PL
dc.referencesde Jong, R. et al. in Changing Climates, Earth Systems and Society. Series: International Year of Planet Earth (ed Dodson, J.) 85–121 (Springer, Heidelberg, 2010).pl_PL
dc.referencesMarcinkian, A. Ziemia lubuska w dobie cywilizacji łużyckiej, cz. 2 Zielona Góra, 2010).pl_PL
dc.referencesUrbańska, A. & Kurnatowski, S. in Studia nad początkami i rozplanowaniem miast na środkową Odrą i dolna Warta (województwo zielonogórskie) t. 1: Ziemia Lubuska, Nowa Marchia, Wielkopolska (ed Zdzisław Kaczmarczyk, A. W.) 35–111 Zielona Góra, 1967).pl_PL
dc.referencesWeiss, A. Organizacja diecezji lubuskiej w średniowieczu Lublin, 1970).pl_PL
dc.referencesLabuda, G. Zajęcie Ziemi Lubuskiej przez margrabiów brandenburskicj w połowie XIII wieku. Śląski Kwartalnik Historyczny „Sobótka” 28, 311–322 (1973).pl_PL
dc.referencesPrzybył, M. in Cognitioni Gestorum. Studia z dziejów średniowiecza dedykowane Profesorowi Jerzemu Strzelczykowi (eds Sikorski, D. A. & Wyrwa, A. M.) 395–404 Poznań-Warszawa, 2006).pl_PL
dc.referencesZajchowska, S. in tudia nad początkami i rozplanowaniem miast na środkową Odrą i dolna Warta (województwo zielonogórskie) t. 1: Ziemia Lubuska, Nowa Marchia, Wielkopolska (eds Kaczmarczyk, Z. & Wędzki, A.) 113–126 Zielona Góra, 1967).pl_PL
dc.referencesWasilkiewicz, K. Templariusze i Joannici w biskupstwie lubuskim (XIII-XVI w.) Gniezno, 2016).pl_PL
dc.referencesCarsten, F. L. Essays in German History (A&C Black, 1985).pl_PL
dc.referencesPiskorski, J. M. Kolonizacja wiejska Pomorza Zachodniego w XIII i w początkach XIV wieku na tle procesów osadniczych w średniowiecznej Europie (Poznańskie Tow, Przyjaciół Nauk, 1990).pl_PL
dc.referencesChmarzyński, G. Zamek w Łagowie. Pamiętnik Związku Historyków Sztuki i Kultury 1, 55–87 (1948).pl_PL
dc.referencesLamentowicz, M. & Mitchell, E. A. D. The ecology of testate amoebae (Protists) in Sphagnum in north-western Poland in relation to peatland ecology. Microb. Ecol. 50, 48–63 (2005).pl_PL
dc.referencesvan Geel, B. in Tracking environmental change using lake sediments. Volume 3: Terrestrial, Algal and Siliceous Indicators (eds Smol, J. P., Birks, H. J. B. & Last, W. M.) 99–119 (Kluwer Academic Publishers, Dortrecht, 2001).pl_PL
dc.referencesDavies, A. L. Dung fungi as an indicator of large herbivore dynamics in peatlands. Rev. Palaeobot. Palynol. 271, 104108 (2019).pl_PL
dc.referencesCywa, K. Trees and shrubs used in medieval Poland for making everyday objects. Veg. Hist. Archaeobot. 27, 111–136 (2018).pl_PL
dc.referencesKurnatowska, Z. & Łosińska, A. in Człowiek a środowisko w środkowym i dolnym Nadodrzu 161–173 Wrocław, 1996).pl_PL
dc.referencesWarner, B. G., Kubiw, H. J. & Hanf, K. I. An anthropogenic cause for quaking mire formation in southwestern Ontario. Nature 340, 380–384 (1989).pl_PL
dc.referencesEllis, E. C. et al. Used planet: A global history. Proc. Natl. Acad. Sci. USA 110, 7978–7985 (2013).pl_PL
dc.referencesHaldon, J. et al. History meets palaeoscience: Consilience and collaboration in studying past societal responses to environmental change. Proc Natl Acad Sci USA 115, 3210 (2018).pl_PL
dc.referencesCzerwiński, S. et al. Znaczenie wspólnych badań historycznych i paleoekologicznych nad wpływem człowieka na środowisko. Przykład ze stanowiska Kazanie we wschodniej Wielkopolsce. Studia Geohistorica 56 (2020).pl_PL
dc.referencesBrown, A. et al. The ecological impact of conquest and colonization on a medieval frontier landscape: combined palynological and geochemical analysis of lake sediments from Radzyń Chełminski, northern Poland. Geoarchaeology 30, 511–527 (2015).pl_PL
dc.referencesJaroszewicz, B. et al. Białowieża forest—a relic of the high naturalness of European Forests. Forests 10, 849 (2019).pl_PL
dc.referencesSabatini, F. M. et al. Where are Europe’s last primary forests. Divers. Distrib. 24, 1426–1439 (2018).pl_PL
dc.referencesLudat, H. Das Lebuser Stiftsregister von 1405. Studien zu den Sozial- und Wirtschaftsverhältnissen im mittleren Oderraum zu Beginn des 15 Wiesbaden, 1965).pl_PL
dc.referencesZellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).pl_PL
dc.referencesHájek, T. in Photosynthesis in Bryophytes and Early Land Plants, Advances in Photosynthesis and Respiration (eds Hanson, D. T. & Rice, S. K.) 233–252 (Springer Science+Business Media, Dordrecht, 2014).pl_PL
dc.referencesLamentowicz, M., Tobolski, K. & Mitchell, E. A. D. Palaeoecological evidence for anthropogenic acidification of a kettle-hole peatland in northern Poland. The Holocene 17, 1185–1196 (2007).pl_PL
dc.referencesSłowiński, M. et al. Paleoecological and historical data as an important tool in ecosystem management. J. Environ. Manag. 236, 755–768 (2019).pl_PL
dc.referencesGorham, E., Janssens, J. A., Wheeler, G. A. & Glaser, P. H. The natural and anthropogenic acidification of peatlands. Effects of atmospheric pollutants on forests, wetlands and agricultural ecosystems. Proc. Toronto, 1985 493–512 (1987).pl_PL
dc.referencesPawlyta, J. & Lamentowicz, M. in Methods of absolute chronology 10th International conference, Gliwice, Poland, 22–25th April 2010 (2010).pl_PL
dc.referencesLamentowicz, M. & Obremska, M. A rapid response of testate amoebae and vegetation to inundation of a kettle hole mire. J. Paleolimnol. 43, 499–511 (2010).pl_PL
dc.referencesZaccone, C. et al. Highly anomalous accumulation rates of C and N recorded by a relic, free-floating peatland in Central Italy. Sci. Rep. 7, 43040 (2017).pl_PL
dc.referencesKorcz, W. Historyczne losy ziem pogranicza lubusko-wielkopolskiego na tle dziejów ziemi lubuskiej. Rocznik Lubuski 40–85 (1966).pl_PL
dc.referencesEllis, E. C. Ecology in an anthropogenic biosphere. Ecol. Monogr. 85, 287–331 (2015).pl_PL
dc.referencesBronk Ramsey, C. Radiocarbon calibration and analysis of stratigraphy: the OxCal program. Radiocarbon 37, 425–430 (1995).pl_PL
dc.referencesBronk Ramsey, C. Deposition models for chronological records. Quatern. Sci. Rev. 27, 42–60 (2008).pl_PL
dc.referencesRamsey, C. B. & Lee, S. Recent and planned developments of the program OxCal. Radiocarbon 55, 720–730 (2013).pl_PL
dc.referencesReimer, P. J. et al. Intcal13 and Marine13 radiocarbon age calibration curves 0–50,000 years Cal BP. Radiocarbon 55, 1869–1887 (2013).pl_PL
dc.referencesBerglund, B. E. & Ralska-Jasiewiczowa, M. in Handbook of Holocene Paleoecology and Paleohydrology (ed Berglund, B. E.) 455–484 (Wiley & Sons Ltd., Chichester-Toronto, 1986).pl_PL
dc.referencesMoore, P. D., Webb, J. A. & Collinson, M. E. Pollen Analysis (Blackwell Scientific Publication, 1991).pl_PL
dc.referencesBeug, H.-J. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete (Verlag Dr. Friedrich Pfeil, München, 2004).pl_PL
dc.referencesvan Geel, B. & Aptroot, A. Fossil ascomycetes in quaternary deposits. Nova Hedwigia 82, 313–329 (2006).pl_PL
dc.referencesBehre, K.-E. The interpretation of anthopogenic indicators in pollen diagrams. Pollen Spores 23, 225–245 (1981).pl_PL
dc.referencesPoska, A., Saarse, L. & Veski, S. Reflections of pre- and early-agrarian human impact in the pollen diagrams of Estonia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 209, 37–50 (2004).pl_PL
dc.referencesGaillard, M.-J. Pollen methods and studies/archaeological applications. Encyclop. Quatern. Sci. 3, 880–904 (2013).pl_PL
dc.referencesTinner, W. & Hu, F. S. Size parameters, size-class distribution and area-number relationship of microscopic charcoal: relevance for fire reconstruction. The Holocene 13, 499–505 (2003).pl_PL
dc.referencesFinsinger, W. & Tinner, W. Minimum count sums for charcoalconcentration estimates in pollen slides: accuracy and potential errors. The Holocene 15, 293–297 (2005).pl_PL
dc.referencesDavis, M. B. & Deevey, E. S. J. Pollen accumulation rates: estimates from late-glacial sediment of Roger Lake. Science 145, 1293–1295 (1964).pl_PL
dc.referencesFeurdean, A. et al. Fire has been an important driver of forest dynamics in the Carpathian Mountains during the Holocene. For. Ecol. Manage. 389, 15–26 (2017).pl_PL
dc.referencesConedera, M. et al. Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quatern. Sci. Rev. 28, 555–576 (2009).pl_PL
dc.referencesMauquoy, D. & van Geel, B. in Encyclopedia of Quaternary Science (Elsevier, Amsterdam, 2007).pl_PL
dc.referencesBooth, R. K., Lamentowicz, M. & Charman, D. J. Preparation and analysis of testate amoebae in peatland paleoenvironmental studies. Mires Peat 7, 1–7 (2010).pl_PL
dc.referencesPayne, R. J. & Mitchell, E. A. D. How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. J. Paleolimnol. 42, 483–495 (2008).pl_PL
dc.referencesClarke, K. J. Guide to Identification of Soil Protozoa - Testate Amoebae (Freshwater Biological Association, Ambleside, 2003).pl_PL
dc.referencesGrospietsch, T. Wechseltierchen (Rhizopoden) (Kosmos Verlag, Stuttgart, 1958).pl_PL
dc.referencesMazei, Y. & Tsyganov, A. N. Freshwater Testate Amoebae (KMK, Moscow, 2006).pl_PL
dc.referencesOgden, C. G. & Hedley, R. H. An Atlas of Freshwater Testate Amoebae (Oxford University Press, London, 1980).pl_PL
dc.referencesMeisterfeld, R. in The Illustrated Guide to the Protozoa (eds Lee, J. J., Leedale, G. F. & Bradbury, P.) 827–860 (Allen Press, Lawrence, 2001).pl_PL
dc.referencesMeisterfeld, R. in The Illustrated Guide to the Protozoa (eds Lee, J. J., Leedale, G. F. & Bradbury, P.) 1054–1084 (Allen Press, Lawrence, 2001).pl_PL
dc.referencesSiemensma, F. J. Microworld, world of amoeboid organisms. World-wide electronic publication (www.arcella.nl) (Kortenhoef, The Netherlands, 2019).pl_PL
dc.referencesJuggins, S. C2 User guide. Software for ecological and palaeoecological data analysis and visualisation (University of Newcastle, Newcastle upon Tyne, UK, 2003).pl_PL
dc.referencesGrimm, E. C. TILIA/TILIA graph. Version 1.2. (1992).pl_PL
dc.referencesMacAskill, M. R. DataGraph 3.0. J. Stat. Softw. 47, 1–9 (2012).pl_PL
dc.referencesLara, E., Roussel-Delif, L., Fournier, B., Wilkinson, D. M. & Mitchell, E. A. D. Soil microorganisms behave like macroscopic organisms: patterns in the global distribution of soil euglyphid testate amoebae. J. Biogeogr. 43, 520–532 (2016).pl_PL
dc.referencesSinger, D., Kosakyan, A., Pillonel, A., Mitchell, E. A. D. & Lara, E. Eight species in the Nebela collaris complex: Nebela gimlii (Arcellinida, Hyalospheniidae), a new species described from a Swiss raised bog. Eur. J. Protistol. 51, 79–85 (2015).pl_PL
dc.referencesDixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).pl_PL
dc.referencesTeam R Development Core. R: A language and environment for statistical computing. (2015).pl_PL
dc.identifier.doihttps://doi.org/10.1038/s41598-020-75692-4
dc.disciplinenauki biologicznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe