Show simple item record

dc.contributor.authorDukowska, Małgorzata
dc.contributor.authorPyrzanowski, Kacper
dc.contributor.authorZięba, Grzegorz
dc.contributor.authorSmith, Carl Hendrik
dc.contributor.authorPrzybylski, Mirosław
dc.date.accessioned2021-09-15T11:14:29Z
dc.date.available2021-09-15T11:14:29Z
dc.date.issued2019
dc.identifier.citationPyrzanowski, K., Zięba, G., Dukowska, M. et al. The role of detritivory as a feeding tactic in a harsh environment – a case study of weatherfish (Misgurnus fossilis). Sci Rep 9, 8467 (2019). https://doi.org/10.1038/s41598-019-44911-ypl_PL
dc.identifier.urihttp://hdl.handle.net/11089/39067
dc.description.abstractThe weatherfish (Misgurnus fossilis) is a species that is tolerant of unfavourable environmental conditions and can survive low dissolved oxygen concentrations and high water temperatures. Although this species occurs across almost the whole of Europe, and is protected in many countries, relatively little is known regarding its ecology. To determine the diet of weatherfish, 120 individuals from an artificial drainage canal in central Poland were collected in two seasons (spring and late summer) with contrasting abiotic condition (oxygen concentration, water temperature and transparency). Analysis of gut fullness showed that weatherfish consumed a greater quantity of food in spring (0.92 ± 0.90) compared with summer (0.20 ± 0.26). Contrary to other cobitid taxa, weatherfish fed actively during daytime in both seasons. An estimate of the importance of each dietary component indicated that the most important food categories were chironomids, copepods, Asellus aquaticus and detritus. SIMPER analysis indicated that these four categories together constituted over 65.8% of cumulative dissimilarity in the diet between seasons. Additionally, trophic niche breadth differed significantly between seasons. The study demonstrated that the weatherfish is an opportunistic feeder, consuming large quantities of detritus despite possessing a gut morphology that is atypical of a detritivore. The quantity of detritus in the gut of weatherfish was positively associated with fish total length and varied seasonally, with a greater quantity of detritus in the diet in late summer. These results demonstrate the importance of detritus as a source of energy, particularly during periods of scarcity of alternative prey categories.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Naturepl_PL
dc.relation.ispartofseriesScientific Reports;9, 8467
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectFreshwater ecologypl_PL
dc.subjectIchthyologypl_PL
dc.titleThe role of detritivory as a feeding tactic in a harsh environment – a case study of weatherfsh (Misgurnus fossilis)pl_PL
dc.typeArticlepl_PL
dc.page.number9pl_PL
dc.contributor.authorAffiliationDepartment of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland.pl_PL
dc.contributor.authorAffiliationDepartment of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland.pl_PL
dc.contributor.authorAffiliationDepartment of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland.pl_PL
dc.contributor.authorAffiliationDepartment of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland. Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Brno, Czech Republic. School of Biology and Bell-Pettigrew Museum of Natural History, University of St Andrews, St Andrews, UK.pl_PL
dc.contributor.authorAffiliationDepartment of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland.pl_PL
dc.identifier.eissn2045-2322
dc.referencesCombes, S. Protecting Freshwater Ecosystems in the Face of Global Climate Change in BUYING TIME: A User’s Manual for Building Resistance and Resilience to Climate Change (eds Hansen, L. J., Biringer, J. H. & Holfman, J. R.) 203–242 (WWF, 2003).pl_PL
dc.referencesHarrod, C. Climate change and freshwater fisheries in Freshwater Fisheries Ecology (ed. Craig, J. F.) 641–694 (John Wiley & Sons, 2015).pl_PL
dc.referencesScheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).pl_PL
dc.referencesPoff, N. L., Brinson, M. M. & Day, J. W. Jr. Aquatic ecosystems & Global climate change: Potential impacts on Inland Freshwater and Coastal Wetland Ecosystems in the United States. (Arlington, VA, Pew Center on Global Climate Change, 2002).pl_PL
dc.referencesAllan, J. D. Stream Ecology. Structure and Function of Running Waters. (Chapman & Hall, 1995).pl_PL
dc.referencesRahel, F. J. & Olden, J. D. Assessing the Effects of Climate Change on Aquatic Invasive Species. Conserv. Biol. 22, 521–533 (2008).pl_PL
dc.referencesBond, N. R., Lake, P. S. & Arthington, A. H. The impacts of drought on freshwater ecosystems: an Australian perspective. Hydrobiologia 600, 3–16 (2008).pl_PL
dc.referencesCowx, I. G., Young, W. O. & Hellawell, M. The influence of drought on the fish and invertebrate populations of an upland stream in Wales. Freshwat. Biol. 14, 165–177 (1984).pl_PL
dc.referencesBond, N. R. & Lake, P. S. Ecological restoration and large-scale ecological disturbance: The effects of drought on the response by fish to a habitat restoration experiment. Restor. Ecol. 13, 39–48 (2005).pl_PL
dc.referencesLind, P. R., Robson, B. J. & Mitchell, B. D. The influence of reduced flow during a drought on patterns of variation in macroinvertebrate assemblages across a spatial hierarchy in two lowland rivers. Freshwat. Biol. 5, 2282–2295 (2006).pl_PL
dc.referencesColvin, R., Giannico, G. R., Li, J., Boyer, K. L. & Gerth, W. J. Fish Use of Intermittent Watercourses Draining Agricultural Lands in the Upper Willamette River Valley, Oregon. Trans. Am. Fish. Soc. 138(6), 1302–1313 (2009).pl_PL
dc.referencesSimon, T. N. & Travis, J. The contribution of man-made ditches to the regional stream biodiversity of the new river watershed in the Florida panhandle. Hydrobiologia 661, 163–177 (2011).pl_PL
dc.referencesMacArthur, R. H. & Pianka, E. R. On the optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).pl_PL
dc.referencesJakubowski, M. The structure and vascularization of the skin of the pond-loach (Misgurnus fossilis L.). Acta Biol. Cracov. 1, 113–127 (1958).pl_PL
dc.referencesKottelat, M. & Freyhof, J. Handbook of European Freshwater Fishes. (Publications Kottelat, 2007).pl_PL
dc.referencesMeyer, L. & Hinrichs, D. Microhabitat preferences and movements of the weatherfish, Misgurnus fossilis, in a drainage channel. Environ. Biol. Fish. 58, 297–306 (2000).pl_PL
dc.referencesPekárik, L., Koščo, J., Košuthová, L. & Košuth, P. Coenological and habitat affinities of Cobitis elongatoides, Sabanejewia balcanica and Misgurnus fossilis in Slovakia. Folia Zool. 57(1–2), 172–180 (2008).pl_PL
dc.referencesHartvich, P., Lusk, S. & Rutkayová, J. Threatened fishes of the world: Misgurnus fossilis (Linnaeus, 1758) (Cobitidae). Environ. Biol. Fish. 87, 39–40 (2010).pl_PL
dc.referencesE.U. Council directive 92/43/EEC on the conservation of natural habitats and wild fauna and flora. Official Journal of the European Union L206, 1-66, Strasbourg, Germany. http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1992L0043:20070101:EN:PDF (1992).pl_PL
dc.referencesWitkowski, A., Kotusz, J. & Przybylski, M. The degree of threat to the freshwater ichthyofauna of Poland: Red list of fishes and lampreys - situation in 2009. Chrońmy Przyrodę Ojczystą 65, 33–52 (In Polish with English summary) (2009).pl_PL
dc.referencesFreyhof, J. & Brooks, E. European Red List of Freshwater Fishes. (Publications Office of the European Union, 2011).pl_PL
dc.referencesBohlen, J., Šlechtová, V., Doarido, I. & Ráb, P. Low mitochondrial divergence indicates a rapid expansion across Europe in the weather loach, Misgurnus fossilis (L.). J. Fish Biol. 71, 186–194 (2007).pl_PL
dc.referencesPyrzanowski, K., Zięba, G. & Przybylski, M. Artificial drainage ditches as undervalued habitats of threatened fish species – a case of weatherfish Misgurnus fossilis in the Natura 2000 site ‘Pradolina Bzury-Neru PLH100006’. Chrońmy Przyrodę Ojczystą 71(4), 266–272 (In Polish with English summary) (2015).pl_PL
dc.referencesPenczak, T. The ichthyofauna of the rivers of the Lodz Upland and adjacent areas. Part Ia. The hydrography and fishes of the Bzura River and its tributaries. Acta Hydrobiol. 10(4), 471–479 (In Polish) (1968).pl_PL
dc.referencesRembiszewski, J. M. & Rolik, H. Krągłouste i ryby – Cyclostomata et Pisces. Katalog Fauny Polski. (In Polish) (PWN, 1975).pl_PL
dc.referencesZięba, G. Fish community structure of the Bzura River system in relation to environmental factors. Ph D Thesis (In Polish) (University of Łódź, 2006).pl_PL
dc.referencesJavahery, S., Nekoubim, H. & Moradlu, A. H. Effect of anaesthesia with clove oil in fish (review). Fish Physiol. Biochem. 38, 1545–1552 (2012).pl_PL
dc.referencesZar, J. H. Biostatistical Analysis. (Englewood Cliffs, Prentice Hall, 1984).pl_PL
dc.referencesHyslop, E. J. Stomach content analysis – a review of methods and their application. J. Fish Biol. 17, 411–429 (1980).pl_PL
dc.referencesGrey, A. E., Mulligan, T. J. & Hannah, R. W. Food habits, occurrence, and population structure of bat ray, Myliobatis californica, in Humboldt Bay, California. Environ. Biol. Fish. 49, 227–238 (1997).pl_PL
dc.referencesCortés, E. A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes. Can. J. Fish. Aquat. Sci. 54, 726–738 (1997).pl_PL
dc.referencesClarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).pl_PL
dc.referencesClarke, K. R. & Warwick, R. M. A framework for studying changes in community structure. Change in marine communities: an approach to statistical analysis and interpretation (Plymouth Marine Laboratory, 1994).pl_PL
dc.referencesHammer, Ř., Harper, D. A. T. & Ryan, P. D. PAST: Paleontological Statistics Software Package for education and data analysis. Palaeontol. Electron. 4(1) Preprint at, http://palaeo-electronica.org/2001_1/past/past.pdf (2001).pl_PL
dc.referencesKrebs, C. J. Ecological Methodology (Benjamin/Cumings, 1999).pl_PL
dc.referencesIeno, E. N. & Zuur, A. F. A beginner’s guide to data exploration and visualisation with R 160–161 (Highland Statistics Ltd, 2015).pl_PL
dc.referencesR Development Core Team R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2018).pl_PL
dc.referencesFrankiewicz, P. The daily feeding pattern of stone loach, Noemacheilus barbatulus (L.) in the upland Lubrzanka river, Poland. Pol. Arch. Hydrobiol. 41(3), 269–278 (1994).pl_PL
dc.referencesMarszał, L., Grzybkowska, M., Przybylski, M. & Valladolid, M. Feeding activity of spined loach Cobitis sp. In Lake Lucień, Poland. Folia Biol. 51, 158–165 (2003).pl_PL
dc.referencesMarszał, L., Grzybkowska, M., Kostrzewa, J. & Kruk, A. Food resource partitioning between spined loach (Cobitis taenia L.) and golden loach [Sabanejewia aurata (Fil.)] in a lowland stream. Roczniki Naukowe PZW 11, 5–18 (In Polish with English summary) (1998).pl_PL
dc.referencesReebs, S. G. Plasticity of diel and circadian activity rhythms in fishes. Rev. Fish Biol. Fisher. 12, 349–371 (2002).pl_PL
dc.referencesRailsback, S. F., Harvey, B. C., Hayse, J. W. & LaGory, K. E. Tests of theory for diel variation in salmonid feeding activity and habitat use. Ecology 86, 947–959 (2005).pl_PL
dc.referencesWootton, R. J. Ecology of Teleost Fishes (Kluwer Academic Publishers, 1998).pl_PL
dc.referencesKostromarova, A. A. The loach - Misgurnus fossilis in Animal Species for Developmental Studies (eds Dettlaff, T. A. & Vassetzky, S. G.) 125–144 (Consultants Bureau, 1991).pl_PL
dc.referencesDrozd, B., Kouřil, J., Bláha, M. & Hamackova, J. Effect of temperature on early life history in weatherfish, Misgurnus fossilis (L. 1758). Knowl. Manag. Aquat. Ecosyst., https://doi.org/10.1051/kmae:2009010 (2009).pl_PL
dc.referencesBoroń, A., Kotusz, J. & Przybylski, M. Koza, koza złotawa, piskorz, śliz (In Polish) (Wydawnictwo IRŚ, 2002).pl_PL
dc.referencesMazurkiewicz, J. Piskorz Misgurnus fossilis Linnaeus, 1758 in Monitoring gatunków zwierząt. Przewodnik metodyczny. Vol. 3 (eds Makomaska-Juchiewicz, M. & Baran, P.) 264–275 (In Polish) (GIOŚ, 2012).pl_PL
dc.referencesKanto, O. et al. Species diversity and abundance of freshwater fishes in irrigation ditches around rice fields. Environ. Biol. Fish. 66, 107–121 (2003).pl_PL
dc.referencesBurchmore, J., Faragher, R. & Thorncraft, G. Occurrences of the introduced oriental weather loach (Misgurnus anguillicaudatus) in the Wingecarribee River, New South Wales in Australian Society for Fish Biology Workshop: Introduced and translocated fishes and their ecological effects (ed. Pollard, D. A.) 38–46 (Australian Government Publishing Services, 1990).pl_PL
dc.referencesTabor, R. A., Warner, E. & Hager, S. An oriental weatherfish (Misgurnus anguillicaudatus) population established in Washington state. Northwest Sci. 75, 72–76 (2001).pl_PL
dc.referencesKubota, Z. Ecology of the Japanese loach, Misgurnus anguillicaudatus (Cantor). J. Shimoneseki Univ. Fish. 11, 141–338 (1961).pl_PL
dc.referencesFrable, B. Oriental Weatherfish, Misgurnus anguillicaudatus (Candor, 1824). Invasive Species Profile, FISH 423. Preprint at, http://depts.washington.edu/oldenlab/wordpress/wp-content/uploads/2013/03/Misgurnus-anguillicaudatus_Frable.pdf (2008).pl_PL
dc.referencesAli, A. Nuisance, economic impact and possibilities for control in The Chironomidae. Biology and ecology of non-biting midge (eds Armitage, P. D., Cranston, P. S. & Pinder, L. C. V.) 339–364 (Chapman and Hall, 1995).pl_PL
dc.referencesBalcombe, S. R., Bunn, S. E., McKenzie-Smith, F. J. & Davies, P. M. Variability of fish diets between dry and flood periods in an arid zone floodplain river. J. Fish Biol. 67, 1552–1567 (2005).pl_PL
dc.referencesAlexandre, C. S., Sales, S., Ferreira, M. T. & Almeida, P. R. Food resources and cyprinid diet in permanent and temporary Mediterranean rivers with natural and regulated flow. Ecol. Freshwat. Fish 24, 629–645 (2015).pl_PL
dc.referencesUrquhart, A. N. & Koetsier, P. Diet of a cryptic but widespread invader, the oriental weatherfish (Misgurnus anguillicaudatus) in Idaho, USA. West. N. Am. Naturalist 74(1), 92–98 (2014).pl_PL
dc.referencesHelfman, G. S., Collette, B. B., Facey, D. E. & Bowen, B. W. The diversity of fishes: biology, evolution, and ecology. 2nd edn (Blackwell, 2009).pl_PL
dc.referencesLowe-McConnell, R. H. Fish communities in tropical freshwaters. (Longman, 1975).pl_PL
dc.referencesBowen, S. H. Detrivory in neotropical fish communities. Environ. Biol. Fishes 9, 137–144 (1983).pl_PL
dc.referencesPrzybylski, M. The diel feeding pattern of bitterling, Rhodeus sericeus amarus (Bloch) in the Wieprzna-Krzna Canal, Poland. Pol. Arch. Hydrobiol. 43, 203–212 (1996).pl_PL
dc.referencesLammens, E. H. R. R. & Hoogenboezem W. Diets and feeding behaviour in Cyprinid fishes (eds Winfield, I. J. & Nelson, J. S.) 353–376 (Springer, 1991).pl_PL
dc.referencesGerking, S. D. Feeding Ecology of Fish. (Academic Press, 1994).pl_PL
dc.referencesOdum, W. E. Utilization of the direct grazing abdolant detritus food chains by the striped mullet Mugil cephalus in Marine Food Chains (ed. Steele, J. H.) 222–240 (Oliver and Boyd, 1970).pl_PL
dc.referencesLobón-Cerviá, J. & Rincón, P. A. Trophic ecology of red roach (Rutilus arcasii) in a seasonal stream; an example of detritivory as a feeding tactic. Freshwat. Biol. 32, 123–132 (1994).pl_PL
dc.referencesVerigina, I. A. Basic adaptations of the digestive system in bony fishes as a function of diet. J. Ichthyol. 30, 897–907 (1990).pl_PL
dc.referencesMagnan, P. & Stevens, E. D. Pyloric caecal morphology of brook charr, Salvelinus fontinalis, in relation to diet. Environ. Biol. Fish. 36, 205–210 (1993).pl_PL
dc.referencesPiersma, T. & Lindström, Å. Rapid reversible changes in organ size as a component of adaptive behaviour. Trends Ecol. Evol. 12, 134–138 (1997).pl_PL
dc.referencesOlsson, J., Quevedo, M., Colson, C. & Svanbäck, R. Gut length plasticity in perch: into the bowels of resource polymorphisms. Biol. J. Linn. Soc. 90(3), 517–523 (2007).pl_PL
dc.referencesGonçalves, A. F., Castro, L. F. C., Pereira-Wilson, C., Coimbra, J. & Wilson, J. M. Is there a compromise between nutrient uptake and gas exchange in the gut of Misgurnus anguillicaudatus, an intestinal air-breathing fish. Comp. Biochem. Physiol. D2, 345–355 (2007).pl_PL
dc.identifier.doihttps://doi.org/10.1038/s41598-019-44911-y
dc.disciplinenauki biologicznepl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa 4.0 Międzynarodowe