Pokaż uproszczony rekord

dc.contributor.authorDabrowski, Pawel
dc.contributor.authorRogala, Maciej
dc.contributor.authorSzoszkiewicz, Robert
dc.date.accessioned2021-09-14T11:01:07Z
dc.date.available2021-09-14T11:01:07Z
dc.date.issued2020
dc.identifier.citationSzoszkiewicz, R.; Rogala, M.; Dąbrowski, P. Surface-Bound and Volatile Mo Oxides Produced During Oxidation of Single MoS2 Crystals in Air and High Relative Humidity. Materials 2020, 13, 3067. https://doi.org/10.3390/ma13143067pl_PL
dc.identifier.issn1996-1944
dc.identifier.urihttp://hdl.handle.net/11089/39057
dc.description.abstractWe report on the MoO3 oxides and their derivatives on microscopic 2H MoS2 flakes oxidized in air and high relative humidity at a moderate temperature range below 410 °C. We combine XPS and AFM measurements such as topography, friction, creation of nanoscale ripples and scratches on the MoS2 flakes deposited on Si substrates. We detect MoO3 oxides mostly by measuring selected nanomechanical properties of the MoO3 layer, such as its compressive mechanical stress at the plastic yield. We discuss basal surface coverage of the single MoS2 flakes by the MoO3 oxides. We discuss conditions for appearance of all possible MoO3 oxide derivatives, such as molybdenum(VI) hydroxyoxides and MoO3 hydrates. Our findings agree with an expected mechanistic switch in thermal oxidation in water vapors vs. air.pl_PL
dc.language.isoenpl_PL
dc.publisherMDPIpl_PL
dc.relation.ispartofseriesMaterials;13(14), 3067
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMoS2pl_PL
dc.subjectMoO3pl_PL
dc.subjectsurface sciencepl_PL
dc.subjectnanoscale ripplespl_PL
dc.subjectatomic force microscopypl_PL
dc.subjectXPSpl_PL
dc.titleSurface-Bound and Volatile Mo Oxides Produced During Oxidation of Single MoS2 Crystals in Air and High Relative Humiditypl_PL
dc.typeArticlepl_PL
dc.page.number14pl_PL
dc.contributor.authorAffiliationDepartment of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, Pomorska 149/153, 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, Pomorska 149/153, 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationFaculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Polandpl_PL
dc.referencesLince, J.R.; Fleischauer, P.D. Ch.7. In Space Vehicle Mechanisms: Elements of Successful Design; Conley, P., Ed.; Wiley-Interscience: New York, NY, USA, 1998.pl_PL
dc.referencesWang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.pl_PL
dc.referencesLiu, L.; Wu, J.; Wu, L.; Ye, M.; Liu, X.; Wang, Q.; Hou, S.; Lu, P.; Sun, L.; Zheng, J.; et al. Phase-selective synthesis of 1T0 MoS2 monolayers and heterophase bilayers. Nat. Mater. 2018, 17, 1108–1114.pl_PL
dc.referencesRadisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistor. Nat. Nanotechnol. 2011, 6, 147–150.pl_PL
dc.referencesLi, X.; Zhu, H. Two-dimensional MoS2 : Properties, preparation, and applications. J. Materiomics 2015, 1, 33–44.pl_PL
dc.referencesGong, C.; Zhang, Y.; Chen, W.; Chu, J.; Lei, T.; Pu, J.; Dai, L.; Wu, C.; Cheng, Y.; Zhai, T.; et al. Electronic and Optoelectronic Applications Based on 2D Novel Anisotropic Transition Metal Dichalcogenides. Adv. Sci. 2017, 4, 1700231.pl_PL
dc.referencesGonzalez-Marin, J.F.; Unuchek, D.; Watanabe, K.; Taniguchi, T.; Kis, A. MoS2 photodetectors integrated with photonic circuits. 2D Mat. Appl. 2019, 14, 1–7.pl_PL
dc.referencesYamamoto, M.; Einstein, T.L.; Fuhrer, M.S.; Cullen, W.G. Anisotropic Etching of Atomically Thin MoS2 . J. Phys. Chem. C 2013, 117, 25643–25649.pl_PL
dc.referencesWu, J.; Li, H.; Yin, Z.; Li, H.; Liu, J.; Cao, X.; Zhang, Q.; Zhang, H. Layer thinning and etching of mechanically exfoliated MoS2 nanosheets by thermal annealing in air. Small 2013, 9, 3314–3319.pl_PL
dc.referencesZhou, H.; Yu, F.; Liu, Y.; Zou, X.; Cong, C.; Qiu, C.; Yu, T.; Yan, Z.; Shen, X.; Sun, L.; et al. Thickness-dependent patterning of MoS2 sheets with well-oriented triangular pits by heating in air. Nano Res. 2013, 6, 703–711.pl_PL
dc.referencesUkegbu, U.; Szoszkiewicz, R. Microscopic Kinetics of Heat-Induced Oxidative Etching of Thick MoS2 Crystals. J. Phys. Chem. C 2019, 123, 22123–22129.pl_PL
dc.referencesWalter, T.N.; Kwok, F.; Simchi, H.; Aldosari, H.M.; Mohney, S.E. Oxidation and oxidative vapor-phase etching of few-layer MoS2 . J. Vac. Sci. Technol. B 2017, 35, 021203.pl_PL
dc.referencesRao, R.; Islam, A.E.; Campbell, P.M.; Vogel, E.M.; Maruyama, B. In situ thermal oxidation kinetics in few layer MoS2 . 2D Mater. 2017, 4, 025058.pl_PL
dc.referencesWang, G.; Pandey, R.; Karna, S.P. Physics and chemistry of oxidation of two-dimensional nanomaterials by molecular oxygen. WIREs Comput. Mol. Sci. 2017, 7, 1–16.pl_PL
dc.referencesSantosh, K.; Longo, R.; Wallace, R.; Cho, K. Surface oxidation energetics and kinetics on MoS2 monolayer. J. Appl. Phys. 2015, 117, 135301.pl_PL
dc.referencesAlves de Castro, I.; Datta, R.S.; Ou, J.Z.; Castellanos-Gomez, A.; Sriram, S.; Daeneke, T.; Kalantar-zadeh, K. Molybdenum Oxides – From Fundamentals to Functionality. Adv. Mater. 2017, 29, 1701619.pl_PL
dc.referencesBihn, J.-H.; Park, J.; Kang, Y.-C. Synthesis and Characterization of Mo Films Deposited by RF Sputtering at Various Oxygen Ratios. J. Korean Phys. Soc. 2011, 58, 509–514.pl_PL
dc.referencesKo, T.Y.; Jeong, A.; Kim, W.; Lee, J.; Kim, Y.; Lee, Y.E.; Ryu, G.H.; Park, K.; Kim, D.; Lee, Z.; et al. On-stack two-dimensional conversion of MoS2 into MoO3 . 2D Mater. 2017, 4, 014003.pl_PL
dc.references. Hussain, S.; Singh, J.; Vikraman, D.; Singh, A.K.; Iqbal, M.Z.; Khan, M.F.; Kumar, P.; Choi, D.-C.; Song, W.; An, K.-S.; et al. Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method. Sci. Rep. 2016, 6, 30791.pl_PL
dc.referencesRoss, S.; Sussman, A. Surface Oxidation of Molybdenum Disulfide. J. Phys. Chem. 1955, 59, 889–892.pl_PL
dc.referencesZhang, X.; Jia, F.; Yang, B.; Song, S. Oxidation of Molybdenum Disulfide Sheet in Water under in Situ Atomic Force Microscopy Observation. J. Phys. Chem. C 2017, 121, 9938–9943.pl_PL
dc.referencesDai, Z.; Jin, W.; Grady, M.; Sadowski, J.T.; Dadap, J.I.; Osgood, R.M., Jr.; Pohl, K. Surface structure of bulk 2H-MoS2 (0001) and exfoliated suspended monolayer MoS2 : A selected area low energy electron diffraction study. Surf. Sci. 2017, 660, 16–21.pl_PL
dc.referencesKadantsev, E.S.; Hawrylak, P. Electronic structure of a single MoS2 monolayer. Solid State Comm. 2012, 152, 909–913.pl_PL
dc.referencesAsbrink, S.; Kihlborg, L.; Malinowski, M. High-Pressure Single-Crystal X-ray Diffraction Studies of MoO3 . I. Lattice Parameters up to 7.4 GPa. J. Appl. Crystallogr. 1988, 21, 960–962.pl_PL
dc.referencesNeˇcas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 2012, 10, 181–188.pl_PL
dc.referencesNeumeister, J.M.; Ducker, W.A. Lateral, normal, and longitudinal spring constants of atomic-force microscopy cantilevers. Rev. Sci. Instrum. 1994, 65, 2527–2531.pl_PL
dc.referencesRyu, Y.; Kim, W.; Koo, S.; Kang, H.; Watanabe, K.; Taniguchi, T. Interface-Confined Doubly Anisotropic Oxidation of Two-Dimensional MoS2 . Nano Lett. 2017, 17, 7267–7273.pl_PL
dc.referencesSpychalski, W.L.; Pisarek, M.; Szoszkiewicz, R. Microscale Insight into Oxidation of Single MoS2 Crystals in Air. J. Phys. Chem. C 2017, 121, 26027–26033.pl_PL
dc.referencesKozbial, A.; Gong, X.; Liu, H.; Li, L. Understanding the Intrinsic Water Wettability of Molybdenum Disulfide (MoS2 ). Langmuir 2015, 31, 8429–8435.pl_PL
dc.referencesLieber, C.M.; Kim, Y. Characterization of the structural, electronic and tribological properties of metal dichalcogenides by scanning probe microscopies. Thin Solid Films 1991, 206, 355–359.pl_PL
dc.referencesSzoszkiewicz, R.; Riedo, E. Nucleation time of nanoscale water bridges. Phys. Rev. Lett. 2005, 95, 135502.pl_PL
dc.referencesSzoszkiewicz, R.; Riedo, E. Nanoscopic friction as a probe of local phase transitions. Appl. Phys. Lett. 2005, 87, 033105.pl_PL
dc.referencesMaugis, D. Contact, Adhesion and Rupture of Elastic Solids; Springer-Verlag: Berlin, Germany, 1999; pp. 1–421.pl_PL
dc.referencesRice, R.H.; Mokarian-Tabari, P.; King, W.P.; Szoszkiewicz, R. Local Thermomechanical Analysis of a Microphase-Separated Thin Lamellar PS b PEO Film. Langmuir 2012, 28, 13503–13511.pl_PL
dc.references. Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and Breaking of Ultrathin MoS2 . ACS Nano. 2011, 5, 9703–9709.pl_PL
dc.referencesMortazavi, B.; Ostadhossein, A.; Rabczuk, T.; van Duin, A.C.T. Mechanical response of all-MoS2 single-layer heterostructures: A ReaxFF investigation. Phys. Chem. Chem. Phys. 2016, 18, 23695–23701.pl_PL
dc.referencesLince, J.R.; Frantz, P.P. Anisotropic oxidation of MoS2 crystallites studied by angle-resolved X-ray photoelectron spectroscopy. Tribol. Lett. 2000, 9, 211–218.pl_PL
dc.referencesGuimond, S.; Göbke, D.; Sturm, J.M.; Romanyshyn, Y.; Kuhlenbeck, H.; Cavalleri, M.; Freund, H.-J. Well-Ordered Molybdenum Oxide Layers on Au(111): Preparation and Properties. J. Phys. Chem. C 2013, 117, 8746–8757.pl_PL
dc.referencesZhu, H.; Qin, X.; Cheng, L.; Azcatl, A.; Kim, J.; Wallace, R.M. Remote Plasma Oxidation and Atomic Layer Etching of MoS2 . ACS Appl. Mater. Interfaces 2016, 8, 19119–19126.pl_PL
dc.referencesSeguin, L.; Figlarz, M.; Cavagnat, R.; Lassegues, J.-C. Infrared and Raman spectra of MoO3 molybdenum trioxides and MoO3 ·xH2O molybdenum trioxide hydrates. Spectrochimica Acta Part A 1995, 51, 1323–1344.pl_PL
dc.referencesKuzmin, A.; Purans, J. Dehydration of the molybdenum trioxide hydrates MoO3 ·nH2O: In situ x-ray absorption spectroscopy study at the Mo K edge. J. Phys. Cond. Matt. 2000, 12, 1959–1970.pl_PL
dc.referencesCruywagen, J.J.; Heyns, J.B.B. Solubility of yellow molybdenum(VI) oxide dihydrate (MoO3 ·2H2O) in 3,0M-sodium perchlorate at 25 ◦C. S. Afr. J. Chem. 1981, 34, 118–120.pl_PL
dc.referencesSmolik, G.R.; Petti, D.A.; Schuetz, S.T. Oxidation, Volatilization and Redistribution of Molybdenum from TZM Alloy in Air; U.S. DOE Report; INEEL/EXT-99-01353; OSTI: Oak Ridge, TN, USA, 2000.pl_PL
dc.referencesCastellanos-Gomez, A.; Barkelid, M.; Goossens, A.M.; Calado, V.E.; van der Zant, H.S.J.; Steele, G.A. Laser-Thinning of MoS2 : On Demand Generation of a Single-Layer Semiconductor. Nano Lett. 2012, 12, 3187–3192.pl_PL
dc.references. Sunamura, K.; Page, T.R.; Yoshida, K.; Yano, T.-A.; Hayamizu, Y. Laser-induced electrochemical thinning of MoS2 . J. Mat. Chem. C 2016, 4, 3268.pl_PL
dc.referencesInzani, K.; Nematollahi, M.; Vullum-Bruer, F.; Grande, T.; Reenaas, T.W.; Selbach, S.M. Electronic properties of reduced molybdenum oxides. Phys. Chem. Chem. Phys. 2017, 19, 9232.pl_PL
dc.identifier.doihttps://doi.org/10.3390/ma13143067
dc.disciplinenauki fizycznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe