Show simple item record

dc.contributor.authorCaban, Pawel
dc.contributor.authorTrzcińska, Kamila
dc.date.accessioned2021-09-09T10:09:52Z
dc.date.available2021-09-09T10:09:52Z
dc.date.issued2019
dc.identifier.citationCaban, P., Trzcińska, K. Noise resistance of activation of the violation of the Svetlichny inequality. Quantum Inf Process 18, 139 (2019). https://doi.org/10.1007/s11128-019-2256-zpl_PL
dc.identifier.urihttp://hdl.handle.net/11089/39013
dc.description.abstractIn this paper, we analyze the activation of the violation of the Svetlichny inequality in GHZ states in the presence of noise. We take into account bit flip, phase flip, amplitude damping and depolarizing noisy channels acting on one, two or three qubits. We find that the effect is most robust in the case of phase flip while most fragile in the case of amplitude damping channel.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Naturepl_PL
dc.relation.ispartofseriesQuantum Information Processing;18
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSvetlichny inequalitypl_PL
dc.subjectNoisy GHZ statespl_PL
dc.subjectGenuine tripartite nonlocalpl_PL
dc.titleNoise resistance of activation of the violation of the Svetlichny inequalitypl_PL
dc.typeArticlepl_PL
dc.page.number14pl_PL
dc.contributor.authorAffiliationDepartment of Theoretical Physics, Faculty of Physics and Applied Informatics, University of Lodz Pomorska, 149/153, 90-236 Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Statistical Methods, Faculty of Economics and Sociology, University of Lodz, 41/43 Rewolucji 1905 St., 90-214 Lodz, Polandpl_PL
dc.identifier.eissn1573-1332
dc.referencesAjoy, A., Rungta, P.: Svetlichny’s inequality and genuine tripartite nonlocality in three-qubit pure states. Phys. Rev. A 81, 052334 (2010)pl_PL
dc.referencesAnn, K., Jaeger, G.: Generic tripartite Bell nonlocality sudden death under local phase noise. Phys. Lett. A 372(46), 6853–6858 (2008). https://doi.org/10.1016/j.physleta.2008.10.003pl_PL
dc.referencesBae, K., Son, W.: Generalized nonlocality criteria under the correlation symmetry. Phys. Rev. A 98, 022116 (2018)pl_PL
dc.referencesBancal, J.D., Barrett, J., Gisin, N., Pironio, S.: Definitions of multipartite nonlocality. Phys. Rev. A 88, 014102 (2013)pl_PL
dc.referencesBrunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)pl_PL
dc.referencesBrunner, N., Cavalcanti, D., Salles, A., Skrzypczyk, P.: Bound nonlocality and activation. Phys. Rev. Lett. 106, 020402 (2011)pl_PL
dc.referencesCaban, P., Molenda, A., Trzcińska, K.: Activation of the violation of the Svetlichny inequality. Phys. Rev. A 92, 032119 (2015)pl_PL
dc.referencesCaban, P., Molenda, A., Trzcińska, K.: Activation of the violation of Svetlichny inequality for a broad class of states. Open Syst. Inf. Dyn. 23, 1650018 (2016)pl_PL
dc.referencesCavalcanti, D., Acín, A., Brunner, N., Vértesi, T.: All quantum states useful for teleportation are nonlocal resources. Phys. Rev. A 87, 042104 (2013)pl_PL
dc.referencesCavalcanti, D., Almeida, M.L., Scarani, V., Acín, A.: Quantum networks reveal quantum nonlocality. Nat. Commun. 2, 184 (2011)pl_PL
dc.referencesCavalcanti, D., Rabelo, R., Scarani, V.: Nonlocality tests enhanced by a third observer. Phys. Rev. Lett. 108, 040402 (2012)pl_PL
dc.referencesGallego, R., Wurflinger, L.E., Acín, A., Navascués, M.: Operational framework for nonlocality. Phys. Rev. Lett. 109, 070401 (2012)pl_PL
dc.referencesGoh, K.T., Kaniewski, J., Wolfe, E., Vértesi, T., Wu, X., Cai, Y., Liang, Y.C., Scarani, V.: Geometry of the set of quantum correlations. Phys. Rev. A 97, 022104 (2018)pl_PL
dc.referencesLaskowski, W., Ryu, J., Żukowski, M.: Noise resistance of the violation of local causality for pure three-qutrit entangled states. J. Phys. A: Math. Theor. 47(42), 424019 (2014). https://doi.org/10.1088/1751-8113/47/42/424019pl_PL
dc.referencesLi, M., Shen, S., Jing, N., Fei, S.M., Li-Jost, X.: Tight upper bound for the maximal quantum value of the Svetlichny operators. Phys. Rev. A 96, 042323 (2017)pl_PL
dc.referencesLu, H.X., Zhao, J.Q., Cao, L.Z., Wang, X.Q.: Experimental investigation of the robustness against noise for different Bell-type inequalities in three-qubit Greenberger–Horne–Zeilinger states. Phys. Rev. A 84, 044101 (2011). https://doi.org/10.1103/PhysRevA.84.044101pl_PL
dc.referencesMermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838 (1990)pl_PL
dc.referencesPaul, B., Mukherjee, K., Sarkar, D.: Revealing hidden genuine tripartite nonlocality. Phys. Rev. A 94, 052101 (2016)pl_PL
dc.referencesPeres, A.: Collective tests for quantum nonlocality. Phys. Rev. A 54, 2685 (1996)pl_PL
dc.referencesPopescu, S.: Bell’s inequalities and density matrices: revealing hidden nonlocality. Phys. Rev. Lett. 74, 2619 (1995)pl_PL
dc.referencesSami, S., Chakrabarty, I., Chaturvedi, A.: Complementarity of genuine multipartite Bell nonlocality. Phys. Rev. A 96, 022121 (2017)pl_PL
dc.referencesSingh, P., Kumar, A.: Analysing nonlocal correlations in three-qubit partially entangled states under real conditions. Int. J. Theor. Phys. 57, 3172–3189 (2018)pl_PL
dc.referencesSvetlichny, G.: Distinguishing three-body from two-body nonseparability by a Bell-type inequality. Phys. Rev. D 35, 3066 (1987)pl_PL
dc.referencesVallins, J., Sainz, A.B., Liang, Y.C.: Almost-quantum correlations and their refinements in a tripartite Bell scenario. Phys. Rev. A 95, 022111 (2017)pl_PL
dc.identifier.doihttps://doi.org/10.1007/s11128-019-2256-z
dc.disciplinenauki fizycznepl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa 4.0 Międzynarodowe