Pokaż uproszczony rekord

dc.contributor.authorUrbaniak, Paweł
dc.contributor.authorBuczkowski, Adam
dc.contributor.authorStepniak, Artur
dc.contributor.authorPalecz, Bartłomiej
dc.date.accessioned2021-09-09T09:36:18Z
dc.date.available2021-09-09T09:36:18Z
dc.date.issued2018
dc.identifier.citationBuczkowski, A., Stepniak, A., Urbaniak, P. et al. Calorimetric and spectroscopic investigations of interactions between cucurbituril Q7 and gemcitabine in aqueous solutions. J Therm Anal Calorim 134, 595–607 (2018). https://doi.org/10.1007/s10973-018-7295-7pl_PL
dc.identifier.issn1388-6150
dc.identifier.urihttp://hdl.handle.net/11089/39011
dc.description.abstractStudies on the interactions between cucurbituril Q7 and gemcitabine (Gem) hydrochloride in water were carried out using isothermal titration calorimetry (ITC) and electrospray ionization–mass spectrometry (ESI-MS). According to ITC and ESI-MS, the formation of this complex occurs in both the solution containing excess gemcitabine and the solution containing excess cucurbituril Q7. ITC results confirm the formation of a thermodynamically stable supramolecular complex with stoichiometry 1:1. The inclusion mechanism of Gem inside the cucurbituril macromolecule is spontaneous (ΔG<0). This process is exothermic (ΔH<0) and is characterized by the loss of entropy (ΔS<0).pl_PL
dc.description.sponsorshipThe study was financed from the Grant for Development of Young Researchers from the Faculty of Chemistry, University of Lodz, 2017.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Nature [Co-publication with Akadémiai Kiadó, Budapest, Hungary]pl_PL
dc.relation.ispartofseriesJournal of Thermal Analysis and Calorimetry;134
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCucurbituril Q7pl_PL
dc.subjectCB[7pl_PL
dc.subjectGemcitabine hydrochloridepl_PL
dc.subjectIsothermal titration calorimetrypl_PL
dc.subjectProtonation constant of gemcitabinepl_PL
dc.titleCalorimetric and spectroscopic investigations of interactions between cucurbituril Q7 and gemcitabine in aqueous solutionspl_PL
dc.typeArticlepl_PL
dc.page.number595–607pl_PL
dc.contributor.authorAffiliationDepartment of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Biophysical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, 90-236, Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Biophysical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, 90-236, Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Biophysical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, 90-236, Lodz, Polandpl_PL
dc.identifier.eissn1588-2926
dc.referencesGrząbka-Zasadzińska A, Klapiszewski Ł, Bula K, Jesionowski T, Borysiak S. Supermolecular structure and nucleation ability of polylactide-based composites with silica/lignin hybrid fillers. J Therm Anal Calorim. 2016;126:263–75.pl_PL
dc.referencesEl-Boraey HA, Serag El-Din AA, Sayed IE. New complexes with 19-membered pyridine-based macrocycle ligand. J Therm Anal Calorim. 2017;129:1243–53.pl_PL
dc.referencesKatoch S, Bajju GD, Devi G, Ahmed A. Synthesis, thermoanalytical and spectroscopic characterization of newly synthesized macrocyclic complexes of thallium(III) and tin(IV). J Therm Anal Calorim. 2017;130:2157–65.pl_PL
dc.referencesLőrinczy D. Thermal analysis in biological and medical applications. J Therm Anal Calorim. 2017;130:1263–80.pl_PL
dc.referencesWszelaka-Rylik M. Thermodynamics of b-cyclodextrin–ephedrine inclusion complex formation and covering of nanometric calcite with these substances. J Therm Anal Calorim. 2017;127:1825–34.pl_PL
dc.referencesBertolino V, Cavallaro G, Lazzara G, Milioto S, Parisi F. Crystallinity of block copolymer controlled by cyclodextrin. J Therm Anal Calorim. 2018.pl_PL
dc.referencesShchepotina EG, Pashkina EA, Yakushenko EV, Kozlov VA. Cucurbiturils as containers for medicinal compounds. Nanotechnol Russ. 2011;6:773–9.pl_PL
dc.referencesWang L, Li L-L, Fan Y-S, Wang H. Host–guest supramolecular nanosystems for cancer diagnostics and therapeutics. Adv Mater. 2013;25:3888–98.pl_PL
dc.referencesPremkumar T, Lee Y, Geckeler KE. Macrocycles as a tool: a facile and one-pot synthesis of silver nanoparticles using cucurbituril designed for cancer therapeutics. Chem Eur J. 2010;16:11563–6.pl_PL
dc.referencesPennakalathil J, Jahja E, Özdemir ES, Konu Ö, Tuncel D. Red emitting, cucurbituril-capped, pH-responsive conjugated oligomer-based nanoparticles for drug delivery and cellular imaging. Biomacromolecules. 2014;15:3366–74.pl_PL
dc.referencesPark KM, Suh K, Jung H, Lee D-W, Ahn Y, Kim J, et al. Cucurbituril-based nanoparticles: a new efficient vehicle for targeted intracellular delivery of hydrophobic drugs. Chem Commun. 2009;1:71–3.pl_PL
dc.referencesLagona J, Mukhopadhyay P, Chakrabarti S, Isaac L. The cucurbit[n]uril family. Angew Chem Int Ed. 2005;44:4844–70.pl_PL
dc.referencesDay A, Arnold AP, Blanch RJ, Snushall B. Controlling factors in the synthesis of cucurbituril and its homologues. J Org Chem. 2001;66:8094–100.pl_PL
dc.referencesLee JW, Samal S, Selvapalam N, Kim H-J, Kim K. Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc Chem Res. 2003;36:621–30.pl_PL
dc.referencesBarrow SJ, Kasera S, Rowland MJ, Barrio JD, Scherman OA. Cucurbituril-based molecular recognition. Chem Rev. 2015;115:12320–406.pl_PL
dc.referencesLogvinenko V, Mitkina T, Drebushchak V, Fedin V. Thermal transformations of the supramolecular compound of cucurbit[8]uril with cobalt(III) complex {trans-[Co(en)2Cl2]@CB[8]}Cl·17 H2O. J Therm Anal Calorim. 2011;105:103–6.pl_PL
dc.referencesHuang Y, Xue S-F, Zhu Q-J, Zhu T. Inclusion interactions of cucurbit[7]uril with adenine and its derivatives. Supramol Chem. 2008;20:279–87.pl_PL
dc.referencesMontes-Navajas P, Gonzalez-Bejar M, Scaiano JC, Garcia H. Cucurbituril complexes cross the cell membrane. Photochem Photobiol Sci. 2009;8:1743–7.pl_PL
dc.referencesPalecz B, Buczkowski A, Piekarski H, Kılınçarslan Ö. Thermodynamic interaction between PAMAM G4-NH2, G4-OH, G3.5-COONa dendrimers and gemcitabine in water solutions. Int J Second Metab. 2016;3:21–6.pl_PL
dc.referencesPili B, Bourgaux C, Meneau F, Couvreur P, Ollivon M. Interaction of an anticancer drug, gemcitabine, with phospholipid bilayers. J Therm Anal Calorim. 2009;98:19–28.pl_PL
dc.referencesCatalog of products of Sigma-Aldrich. http://www.sigmaaldrich.com.pl_PL
dc.referencesCatalog of products of Selleckchem. http://www.selleckchem.com.pl_PL
dc.referencesCatalog of products of MedKoo Biosciences. http://www.medkoo.com.pl_PL
dc.referencesCatalog of products of SantaCruz Biotechnology. https://www.scbt.com.pl_PL
dc.referencesExperimental value of pKa from the Database DrugBank. https://www.drugbank.ca.pl_PL
dc.referencesGhosh I, Nau WM. The strategic use of supramolecular pKa shifts to enhance the bioavailability of drugs. Adv Drug Deliv Rev. 2012;64:764–83.pl_PL
dc.referencesKhorwal V, Nudurupati U, Mondal SI, Datta A. Interplay of hydrophobic and electrostatic interactions in modulation of protonation–deprotonation equilibria of two positional isomers in their complexes with cucurbiturils. J Phys Chem C. 2017;121:5379–88.pl_PL
dc.referencesGans P, Sabatini A, Vacca A. Investigation of equilibria in solutions. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta. 1996;43:1739–53.pl_PL
dc.referencesAlderighi L, Gans P, Ienco A, Peters D, Sabatini A, Vacca A. Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord Chem Rev. 1999;184:311–8.pl_PL
dc.referencesITC Date Analysis in Origin—Tutorial Guide. Northampton: MicroCal; 2004.pl_PL
dc.referencesVP-ITC MicroCalorimeter User’s manual. Northampton: MicroCal; 2004.pl_PL
dc.referencesLiu D-H, Zhao W-W, Li Z-X. To determine the half-life for gemcitabine hydrochloride using microcalorimetry. J Therm Anal Calorim. 2014;115:1793–7.pl_PL
dc.referencesAssaf KI, Nau WM. Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem Soc Rev. 2015;44:394–418.pl_PL
dc.referencesSowemimo-Coker SO. Red blood cell hemolysis during processing. Transfus Med Rev. 2002;16:46–60.pl_PL
dc.referencesHoffman JF. Physiological characteristics of human red blood cell ghosts. J Gen Physiol. 1958;42:9–28.pl_PL
dc.referencesSelinger AJ, Macartney DH. Cucurbit[7]uril complexations of Good’s buffers. RSC Adv. 2017;7:42513–8.pl_PL
dc.identifier.doi10.1007/s10973-018-7295-7
dc.disciplinenauki chemicznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe