Show simple item record

dc.contributor.authorUrbaniak, Paweł
dc.contributor.authorBuczkowski, Adam
dc.contributor.authorStepniak, Artur
dc.contributor.authorPalecz, Bartłomiej
dc.date.accessioned2021-09-09T09:36:18Z
dc.date.available2021-09-09T09:36:18Z
dc.date.issued2018
dc.identifier.citationBuczkowski, A., Stepniak, A., Urbaniak, P. et al. Calorimetric and spectroscopic investigations of interactions between cucurbituril Q7 and gemcitabine in aqueous solutions. J Therm Anal Calorim 134, 595–607 (2018). https://doi.org/10.1007/s10973-018-7295-7pl_PL
dc.identifier.issn1388-6150
dc.identifier.urihttp://hdl.handle.net/11089/39011
dc.description.abstractStudies on the interactions between cucurbituril Q7 and gemcitabine (Gem) hydrochloride in water were carried out using isothermal titration calorimetry (ITC) and electrospray ionization–mass spectrometry (ESI-MS). According to ITC and ESI-MS, the formation of this complex occurs in both the solution containing excess gemcitabine and the solution containing excess cucurbituril Q7. ITC results confirm the formation of a thermodynamically stable supramolecular complex with stoichiometry 1:1. The inclusion mechanism of Gem inside the cucurbituril macromolecule is spontaneous (ΔG<0). This process is exothermic (ΔH<0) and is characterized by the loss of entropy (ΔS<0).pl_PL
dc.description.sponsorshipThe study was financed from the Grant for Development of Young Researchers from the Faculty of Chemistry, University of Lodz, 2017.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Nature [Co-publication with Akadémiai Kiadó, Budapest, Hungary]pl_PL
dc.relation.ispartofseriesJournal of Thermal Analysis and Calorimetry;134
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCucurbituril Q7pl_PL
dc.subjectCB[7pl_PL
dc.subjectGemcitabine hydrochloridepl_PL
dc.subjectIsothermal titration calorimetrypl_PL
dc.subjectProtonation constant of gemcitabinepl_PL
dc.titleCalorimetric and spectroscopic investigations of interactions between cucurbituril Q7 and gemcitabine in aqueous solutionspl_PL
dc.typeArticlepl_PL
dc.page.number595–607pl_PL
dc.contributor.authorAffiliationDepartment of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Biophysical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, 90-236, Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Biophysical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, 90-236, Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Biophysical Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 165, 90-236, Lodz, Polandpl_PL
dc.identifier.eissn1588-2926
dc.referencesGrząbka-Zasadzińska A, Klapiszewski Ł, Bula K, Jesionowski T, Borysiak S. Supermolecular structure and nucleation ability of polylactide-based composites with silica/lignin hybrid fillers. J Therm Anal Calorim. 2016;126:263–75.pl_PL
dc.referencesEl-Boraey HA, Serag El-Din AA, Sayed IE. New complexes with 19-membered pyridine-based macrocycle ligand. J Therm Anal Calorim. 2017;129:1243–53.pl_PL
dc.referencesKatoch S, Bajju GD, Devi G, Ahmed A. Synthesis, thermoanalytical and spectroscopic characterization of newly synthesized macrocyclic complexes of thallium(III) and tin(IV). J Therm Anal Calorim. 2017;130:2157–65.pl_PL
dc.referencesLőrinczy D. Thermal analysis in biological and medical applications. J Therm Anal Calorim. 2017;130:1263–80.pl_PL
dc.referencesWszelaka-Rylik M. Thermodynamics of b-cyclodextrin–ephedrine inclusion complex formation and covering of nanometric calcite with these substances. J Therm Anal Calorim. 2017;127:1825–34.pl_PL
dc.referencesBertolino V, Cavallaro G, Lazzara G, Milioto S, Parisi F. Crystallinity of block copolymer controlled by cyclodextrin. J Therm Anal Calorim. 2018.pl_PL
dc.referencesShchepotina EG, Pashkina EA, Yakushenko EV, Kozlov VA. Cucurbiturils as containers for medicinal compounds. Nanotechnol Russ. 2011;6:773–9.pl_PL
dc.referencesWang L, Li L-L, Fan Y-S, Wang H. Host–guest supramolecular nanosystems for cancer diagnostics and therapeutics. Adv Mater. 2013;25:3888–98.pl_PL
dc.referencesPremkumar T, Lee Y, Geckeler KE. Macrocycles as a tool: a facile and one-pot synthesis of silver nanoparticles using cucurbituril designed for cancer therapeutics. Chem Eur J. 2010;16:11563–6.pl_PL
dc.referencesPennakalathil J, Jahja E, Özdemir ES, Konu Ö, Tuncel D. Red emitting, cucurbituril-capped, pH-responsive conjugated oligomer-based nanoparticles for drug delivery and cellular imaging. Biomacromolecules. 2014;15:3366–74.pl_PL
dc.referencesPark KM, Suh K, Jung H, Lee D-W, Ahn Y, Kim J, et al. Cucurbituril-based nanoparticles: a new efficient vehicle for targeted intracellular delivery of hydrophobic drugs. Chem Commun. 2009;1:71–3.pl_PL
dc.referencesLagona J, Mukhopadhyay P, Chakrabarti S, Isaac L. The cucurbit[n]uril family. Angew Chem Int Ed. 2005;44:4844–70.pl_PL
dc.referencesDay A, Arnold AP, Blanch RJ, Snushall B. Controlling factors in the synthesis of cucurbituril and its homologues. J Org Chem. 2001;66:8094–100.pl_PL
dc.referencesLee JW, Samal S, Selvapalam N, Kim H-J, Kim K. Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. Acc Chem Res. 2003;36:621–30.pl_PL
dc.referencesBarrow SJ, Kasera S, Rowland MJ, Barrio JD, Scherman OA. Cucurbituril-based molecular recognition. Chem Rev. 2015;115:12320–406.pl_PL
dc.referencesLogvinenko V, Mitkina T, Drebushchak V, Fedin V. Thermal transformations of the supramolecular compound of cucurbit[8]uril with cobalt(III) complex {trans-[Co(en)2Cl2]@CB[8]}Cl·17 H2O. J Therm Anal Calorim. 2011;105:103–6.pl_PL
dc.referencesHuang Y, Xue S-F, Zhu Q-J, Zhu T. Inclusion interactions of cucurbit[7]uril with adenine and its derivatives. Supramol Chem. 2008;20:279–87.pl_PL
dc.referencesMontes-Navajas P, Gonzalez-Bejar M, Scaiano JC, Garcia H. Cucurbituril complexes cross the cell membrane. Photochem Photobiol Sci. 2009;8:1743–7.pl_PL
dc.referencesPalecz B, Buczkowski A, Piekarski H, Kılınçarslan Ö. Thermodynamic interaction between PAMAM G4-NH2, G4-OH, G3.5-COONa dendrimers and gemcitabine in water solutions. Int J Second Metab. 2016;3:21–6.pl_PL
dc.referencesPili B, Bourgaux C, Meneau F, Couvreur P, Ollivon M. Interaction of an anticancer drug, gemcitabine, with phospholipid bilayers. J Therm Anal Calorim. 2009;98:19–28.pl_PL
dc.referencesCatalog of products of Sigma-Aldrich. http://www.sigmaaldrich.com.pl_PL
dc.referencesCatalog of products of Selleckchem. http://www.selleckchem.com.pl_PL
dc.referencesCatalog of products of MedKoo Biosciences. http://www.medkoo.com.pl_PL
dc.referencesCatalog of products of SantaCruz Biotechnology. https://www.scbt.com.pl_PL
dc.referencesExperimental value of pKa from the Database DrugBank. https://www.drugbank.ca.pl_PL
dc.referencesGhosh I, Nau WM. The strategic use of supramolecular pKa shifts to enhance the bioavailability of drugs. Adv Drug Deliv Rev. 2012;64:764–83.pl_PL
dc.referencesKhorwal V, Nudurupati U, Mondal SI, Datta A. Interplay of hydrophobic and electrostatic interactions in modulation of protonation–deprotonation equilibria of two positional isomers in their complexes with cucurbiturils. J Phys Chem C. 2017;121:5379–88.pl_PL
dc.referencesGans P, Sabatini A, Vacca A. Investigation of equilibria in solutions. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta. 1996;43:1739–53.pl_PL
dc.referencesAlderighi L, Gans P, Ienco A, Peters D, Sabatini A, Vacca A. Hyperquad simulation and speciation (HySS): a utility program for the investigation of equilibria involving soluble and partially soluble species. Coord Chem Rev. 1999;184:311–8.pl_PL
dc.referencesITC Date Analysis in Origin—Tutorial Guide. Northampton: MicroCal; 2004.pl_PL
dc.referencesVP-ITC MicroCalorimeter User’s manual. Northampton: MicroCal; 2004.pl_PL
dc.referencesLiu D-H, Zhao W-W, Li Z-X. To determine the half-life for gemcitabine hydrochloride using microcalorimetry. J Therm Anal Calorim. 2014;115:1793–7.pl_PL
dc.referencesAssaf KI, Nau WM. Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem Soc Rev. 2015;44:394–418.pl_PL
dc.referencesSowemimo-Coker SO. Red blood cell hemolysis during processing. Transfus Med Rev. 2002;16:46–60.pl_PL
dc.referencesHoffman JF. Physiological characteristics of human red blood cell ghosts. J Gen Physiol. 1958;42:9–28.pl_PL
dc.referencesSelinger AJ, Macartney DH. Cucurbit[7]uril complexations of Good’s buffers. RSC Adv. 2017;7:42513–8.pl_PL
dc.identifier.doi10.1007/s10973-018-7295-7
dc.disciplinenauki chemicznepl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa 4.0 Międzynarodowe