dc.contributor.author | Nowak, Katarzyna | |
dc.contributor.author | Matiadis, Dimitris | |
dc.contributor.author | Karagiaouri, Maria | |
dc.contributor.author | Mavroidi, Barbara | |
dc.contributor.author | Katsipis, Georgios | |
dc.contributor.author | Pelecanou, Maria | |
dc.contributor.author | Pantazaki, Anastasia | |
dc.contributor.author | Sagnou, Marina | |
dc.date.accessioned | 2021-09-09T09:34:18Z | |
dc.date.available | 2021-09-09T09:34:18Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Matiadis, D., Karagiaouri, M., Mavroidi, B. et al. Synthesis and antimicrobial evaluation of a pyrazoline-pyridine silver(I) complex: DNA-interaction and anti-biofilm activity. Biometals 34, 67–85 (2021). https://doi.org/10.1007/s10534-020-00263-z | pl_PL |
dc.identifier.issn | 0966-0844 | |
dc.identifier.uri | http://hdl.handle.net/11089/39008 | |
dc.description.abstract | The emergence of resistant bacterial strains mainly due to misuse of antibiotics has seriously affected our ability to treat bacterial illness, and the development of new classes of potent antimicrobial agents is desperately needed. In this study, we report the efficient synthesis of a new pyrazoline-pyridine containing ligand L1 which acts as an NN-donor for the formation of a novel silver (I) complex 2. The free ligand did not show antibacterial activity. High potency was exhibited by the complex against three Gram-negative bacteria, namely Escherichia coli, Pseudomonas aeruginosa and Acinetobacter baumanii with the minimum inhibitory concentration (MIC) ranging between 4 and 16 μg/mL (4.2–16.7 μM), and excellent activity against the fungi Candida albicans and Cryptococcus neoformans (MIC ≤ 0.25 μg/mL = 0.26 μM). Moreover, no hemolytic activity within the tested concentration range was observed. In addition to the planktonic growth inhibition, the biofilm formation of both Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa was significantly reduced by the complex at MIC concentrations in a dose-dependent manner for Pseudomonas aeruginosa, whereas a biphasic response was obtained for MRSA showing that the sub-MIC doses enhanced biofilm formation before its reduction at higher concentration. Finally, complex 2 exhibited strong DNA binding with a large drop in DNA viscosity indicating the absence of classical intercalation and suggesting the participation of the silver ion in DNA binding which may be related to its antibacterial activity. Taken together, the current results reveal that the pyrazoline-pyridine silver complexes are of high interest as novel antibacterial agents, justifying further in vitro and in vivo investigation. | pl_PL |
dc.publisher | Springer Nature | pl_PL |
dc.relation.ispartofseries | BioMetals;34 | |
dc.rights | Uznanie autorstwa 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Silver complexes | pl_PL |
dc.subject | NN donors | pl_PL |
dc.subject | Pyrazoline-pyridine | pl_PL |
dc.subject | Antimicrobial | pl_PL |
dc.subject | DNA binding | pl_PL |
dc.subject | Anti-biofilm | pl_PL |
dc.title | Synthesis and antimicrobial evaluation of a pyrazoline-pyridine silver(I) complex: DNA-interaction and anti-biofilm activity | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 67-85 | pl_PL |
dc.contributor.authorAffiliation | University of Lodz, Faculty of Biology and Environmental Protection | pl_PL |
dc.contributor.authorAffiliation | National Centre for Scientific Research “Demokritos”, Institute of Biosciences and Applications, Athens, Greece | pl_PL |
dc.contributor.authorAffiliation | Department of Chemistry, Laboratory of Biochemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece | pl_PL |
dc.contributor.authorAffiliation | National Centre for Scientific Research “Demokritos”, Institute of Biosciences and Applications, Athens, Greece | pl_PL |
dc.contributor.authorAffiliation | Department of Chemistry, Laboratory of Biochemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece | pl_PL |
dc.contributor.authorAffiliation | National Centre for Scientific Research “Demokritos”, Institute of Biosciences and Applications, Athens, Greece | pl_PL |
dc.contributor.authorAffiliation | Department of Chemistry, Laboratory of Biochemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece | pl_PL |
dc.contributor.authorAffiliation | National Centre for Scientific Research “Demokritos”, Institute of Biosciences and Applications, Athens, Greece | pl_PL |
dc.identifier.eissn | 1572-8773 | |
dc.references | Achar G, Shahini CR, Patil SA, Malecki JG, Pan SH, Lan A, Chen XR, Budagumpi S (2018) Sterically modulated silver (I) complexes of coumarin substituted benzimidazol–2–ylidenes: Synthesis, crystal structures and evaluation of their antimicrobial and antilung cancer potentials. J Inorg Biochem 183:43–57. https://doi.org/10.1016/j.jinorgbio.2018.02.012 | pl_PL |
dc.references | Altürk S, Avci D, Tamer Ö, Atalay Y (2017) DFT calculations on spectroscopic, structural and NLO properties of silver (I) complex with picolinamide. AIP Conf Proc 1815:100001. https://doi.org/10.1063/1.4976464 | pl_PL |
dc.references | Anjomshoa M, Hadadzadeh H, Fatemi SJ, Torkzadeh-Mahani M (2015) A mononuclear Ni(II) complex with 5,6-diphenyl-3-(2- pyridyl)-1,2,4- triazine: dNA- and BSA-binding and anticancer activity against human breast carcinoma cells. Spectrochim Acta A Mol Biomol Spectrosc 136:205–215. https://doi.org/10.1016/j.saa.2014.09.016 | pl_PL |
dc.references | Aulakh JK, Lobana TS, Sood H, Arora DS, Garcia-Santos I, Kaur M, Jasinski JP (2020) Synthesis, structures, and novel antimicrobial activity of silver (I) halide complexes of imidazolidine-2-thiones. Polyhedron 175:114235. https://doi.org/10.1016/j.poly.2019.114235 | pl_PL |
dc.references | Aulakh JK, Lobana TS, Sood H, Arora DS, Smolinski VA, Duff CE, Jasinski JP (2018) Synthesis, structures, and ESI-mass studies of silver(I) derivatives of imidazolidine-2-thiones: Antimicrobial potencial and biosafety evaluation. J Inorg Biochem 178:18–31. https://doi.org/10.1016/j.jinorgbio.2017.10.002 | pl_PL |
dc.references | Bain D, Paramanik B, Patra A (2017) Silver(I) induced conformation change of DNA: gold nanocluster as spectroscopic probe. J Phys Chem C 121:4608–4617. https://doi.org/10.1021/acs.jpcc.6b10560 | pl_PL |
dc.references | Banti CN, Hadjikakou SK (2013) Anti-proliferative and anti-tumor activity of silver(I) compounds. Metallomics 5:569–596. https://doi.org/10.1039/c3mt00046j | pl_PL |
dc.references | Banti CN, Giannoulis AD, Kourkoumelis N, Owczarzak AM, Poyraz M, Kubicki M, Charalabopoulos K, Hadjikakou SK (2012) Mixed ligand-silver(I) complexes with anti-inflammatory agents which bind to lipoxygenase and calf-thymus DNA, modulating their function and inducing apoptosis. Metallomics 4:545–560. https://doi.org/10.1039/C2MT20039B | pl_PL |
dc.references | Banti CN, Giannoulis AD, Kourkoumelis N, Owczarzak AM, Kubicki M, Hadjikakou SK (2015) Silver(I) Compounds of the anti-inflammatory agents salicylic acid and P-Hydroxyl-Benzoic acid which modulate cell function. J Inorg Biochem 142:132–144. https://doi.org/10.1016/j.jinorgbio.2014.10.005 | pl_PL |
dc.references | Barillo DJ, Marx DE (2014) Silver in medicine: a brief history BC 335 to present. Burns 40S:S3–S8. https://doi.org/10.1016/j.burns.2014.09.009 | pl_PL |
dc.references | Becke AD (1993) Density Functional Thermochemistry. III. The Role of Exact Exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913 | pl_PL |
dc.references | Bjarnsholt T, Kirketerp-Møller K, Kristiansen S, Phipps R, Nielsen AK, Jensen PØ, Høiby N, Givskov N (2007) Silver against Pseudomonas aeruginosa biofilms. APMIS 115:921–928. https://doi.org/10.1111/j.1600-0463.2007.apm_646.x | pl_PL |
dc.references | Budzisz E, Miernicka M, Lorenz I-P, Mayer P, Krajewska U, Rozalski M (2009) Synthesis and X-ray Structure of Platinum(II), Palladium(II) and Copper(II) Complexes with Pyridine-pyrazole Ligands: Influence of Ligands’ Structure on Cytotoxic Activity. Polyhedron 28:637–645. https://doi.org/10.1016/j.poly.2008.12.013 | pl_PL |
dc.references | Chandramouli KH, Thimmaiah KN, Chandrashekar A, D’Souza CJM (2004) Interaction of 2-Chloro-N-Substituted Phenoxazine with DNA and Effect on DNA Melting. Nucleosides Nucleotides Nucleic Acids 23:1639–1656. https://doi.org/10.1081/NCN-200031461 | pl_PL |
dc.references | Cifuentes-Vaca OL, Andrades-Lagos J, Campanini-Salinas J, Laguna A, Vásquez-Velásquez D, Concepción Gimeno M (2019) Silver(I) and copper(I) complexes with a Schiff base derived from 2-aminofluorene with promising antibacterial activity. Inorg Chim Acta 489:275–279. https://doi.org/10.1016/j.ica.2019.02.033 | pl_PL |
dc.references | Cohen G, Eisenber H (1969) Viscosity and sedimentation study of sonicated DNA proflavine complexes. Biopolymers 8:45–55. https://doi.org/10.1002/bip.1969.360080105 | pl_PL |
dc.references | Curran R, Lenehan J, McCann M, Kavanagh K, Devereux M, Egan DA, Clifford G, Keane K, Creaven BS, McKee V (2007) "[Ag2 (aca) 2] n and [Ag4 (aca) 4 (NH3) 2](acaH= 9-anthracenecarboxylic acid): Synthesis, X-ray crystal structures, antimicrobial and anti-cancer activities. Inorg Chem Commun 10:1149–1153. https://doi.org/10.1016/j.inoche.2007.06.021 | pl_PL |
dc.references | Dabrowiak JC (2017) Metals in Medicine, Chap 7. Wiley, Oxford UK | pl_PL |
dc.references | Das S, Kumar GS (2008) Molecular aspects on the interaction of phenosafranine to deoxyribonucleic acid: Model for intercalative drug–DNA binding. J Mol Struct 872:56–63. https://doi.org/10.1016/j.molstruc.2007.02.016 | pl_PL |
dc.references | Dunning TH Jr, Hay PJ (1997) Gaussian Basis Sets for Molecular Calculations. In: Schaefer HF (ed) Modern Theoretical Chemistry, vol 3. Plenum, New York, pp 1–28 | pl_PL |
dc.references | Đurić S, Vojnovic S, Pavic A, Mojicevic M, Wadepohl H, Savić ND, Popsavin M, Nikodinovic-Runic J, Djuran MI, Glišić BĐ (2020) New polynuclear 1,5-naphthyridine-silver(I) complexes as potential antimicrobial agents: The key role of the nature of donor coordinated to the metal center. J Inorg Biochem 203:110872. https://doi.org/10.1016/j.jinorgbio.2019.110872 | pl_PL |
dc.references | Enna SJ, Bylund DB (2008) xPharm: The Comprehensive pharmacology reference. Elsevier, Pittsburgh | pl_PL |
dc.references | Favarin LRV, Oliveira LB, Silva H, Micheletti AC, Pizzuti L, Machulek-Júnior A, Caires ARL, Back DF, Lima SM, Andrade LHC, Duarte LFB, Pinto LMC, Casagrande GA (2019) Sonochemical Synthesis of Highly Luminescent Silver Complexes: Photophysical Properties and Preliminary in vitro Antitumor and Antibacterial Assays, Inorg Chim. Acta 492:235–242. https://doi.org/10.1016/j.ica.2019.04.043 | pl_PL |
dc.references | Fomuta TR, Ngoune J, Djimassingar G, Djampouo TA, Matemb JMNT, Anguile JJ, Nenwa J (2017) Synthesis, Rietveld Refinement and DFT Studies of Bis(4,5-di-hydro-1H-benzo[g]indazole)silver(I) Hexafluorophosphate Complex Salt. Open J Inorg Chem 7:102–115. https://doi.org/10.4236/ojic.2017.74007 | pl_PL |
dc.references | Fox CL, Modak SM (1974) Mechanism of Silver Sulfadiazine Action on Burn Wound Infections. Antimicrob Agents Chemother 5:582–588. https://doi.org/10.1128/AAC.5.6.582 | pl_PL |
dc.references | Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery J, Vreven T, Kudin KN, Burant JC, Millam NJ, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas Ö, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision D.01, Wallingford CT. | pl_PL |
dc.references | Glišić BĐ, Senerovic L, Comba P, Wadepohl H, Veselinovic A, Milivojevic DR, Djuran MI, Nikodinovic-Runic J (2016) Silver(I) complexes with phthalazine and quinazoline as effective agents against pathogenic Pseudomonas aeruginosa strains. J Inorg Biochem 155:115–128. https://doi.org/10.1016/j.jinorgbio.2015.11.026 | pl_PL |
dc.references | Hamil RJ (2013) Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs 73:919–934. https://doi.org/10.1007/s40265-013-0069-4 | pl_PL |
dc.references | Havrylyuk D, Heidary DK, Su, n Y, Parkin, S, Glazer E C, (2020) Photochemical and Photobiological Properties of Pyridyl-pyrazol(in)e-Based Ruthenium(II) Complexes with Sub-micromolar Cytotoxicity for Phototherapy. ACS Omega 5(30):18894–18906. https://doi.org/10.1021/acsomega.0c02079 | pl_PL |
dc.references | Hay PJ, Wadt WR (1985a) Ab initio effective core potentials for molecular calculations. Potentials for the transition-metal atoms Sc to Hg. J Chem Phys 82:270–283. https://doi.org/10.1063/1.448799 | pl_PL |
dc.references | Hay PJ, Wadt WR (1985b) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310. https://doi.org/10.1063/1.448975 | pl_PL |
dc.references | Høiby N, Bjarnsholt T, Givskov M, Molin S (2010) Ciofu O Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35:322–332. https://doi.org/10.1016/j.ijantimicag.2009.12.011 | pl_PL |
dc.references | Hossain Z, Huq F (2002) Studies on the interaction between Ag(+) and DNA. J Inorg Biochem 91:398–404. https://doi.org/10.1016/s0162-0134(02)00454-3 | pl_PL |
dc.references | Jana B, Senapati S, Ghosh D, Bose D, Chattopadhyay N (2012) Spectroscopic Exploration of Mode of Binding of ctDNA with 3-Hydroxyflavone: A Contrast to the Mode of Binding with Flavonoids Having Additional Hydroxyl Groups. J Phys Chem B 116:639–645. https://doi.org/10.1021/jp2094824 | pl_PL |
dc.references | Jiang WY, Ran SY (2018) Two-stage DNA compaction induced by silver ions suggests a cooperative binding mechanism. J Chem Phys 148:205102. https://doi.org/10.1063/1.5025348 | pl_PL |
dc.references | Kalinowska-Lis U, Felczak A, Chęcińska L, Szabłowska-Gadomska I, Patyna E, Małecki M, Lisowska K, Ochocki J (2016) Antibacterial Activity and Cytotoxicity of Silver(I) Complexes of Pyridine and (Benz) Imidazole. Derivatives X-ray Crystal Structure of [Ag(2,6-di(CH2OH)py)2]NO3. Molecules 21:87. https://doi.org/10.3390/molecules21020087 | pl_PL |
dc.references | Kazachenko AS, Legler AV, Per’yanova OV, Vstavskaya YA, (2000) Synthesis and antimicrobial activity of silver complexes with histidine and tryptophan. Pharm Chem J 34:257–258. https://doi.org/10.1007/BF02524634 | pl_PL |
dc.references | Kelly JM, Tossi AB, McConnell DJ, OhUigin C (1985) A study of the interactions of some polypyridylruthenium (II) complexes with DNA using fluorescence spectroscopy, topoisomerisation and thermal denaturation. Nucl Acids Res 13:6017–6034. https://doi.org/10.1093/nar/13.17.6017 | pl_PL |
dc.references | Kyros L, Banti CN, Kourkoumelis N, Kubicki M, Sainis I, Hadjikakou SK (2014) Synthesis, characterization, and binding properties towards CT-DNA and lipoxygenase of mixed-ligand silver(I) complexes with 2- mercaptothiazole and its derivatives and triphenylphosphine. J Biol Inorg Chem 19:449–464. https://doi.org/10.1007/s00775-014-1089-6 | pl_PL |
dc.references | Kupcewicz B, Ciolkowski M, Karwowski BT, Rozalski M, Krajewska U, Lorenz I-P, Mayer P, Budzisz E (2013) Copper(II) Complexes with Pyrazole Derivatives−Synthesis, Crystal Structure, DFT Calculations and Cytotoxic Activity. J. Mol. Struct. 1052:32–37. https://doi.org/10.1016/j.molstruc.2013.08.045 | pl_PL |
dc.references | Lee C, Yang W, Parr RG (1998) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785 | pl_PL |
dc.references | Lerman LS (1961) Structural considerations in the interaction of DNA and acridines. J Mol Biol 3:18–30. https://doi.org/10.1016/S0022-2836(61)80004-1 | pl_PL |
dc.references | Li XH, Lee JH (2017) Antibiofilm agents: A new perspective for antimicrobial strategy. J Microbiol 55:753–766. https://doi.org/10.1007/s12275-017-7274-x | pl_PL |
dc.references | Liang X, Luan S, Yin Z, He M, He C, Yin L, Zou Y, Yuan Z, Li L, Song X, Lv C, Zhang W (2018) Recent advances in the medical use of silver complex. Eur J Med Chem 157:62–80. https://doi.org/10.1016/j.ejmech.2018.07.057 | pl_PL |
dc.references | Maillard JY, Hartemann P (2013) Silver as an antimicrobial: facts and gaps in knowledge. Crit Rev Microbiol 39:373–383. https://doi.org/10.3109/1040841X.2012.713323 | pl_PL |
dc.references | Matiadis D, Mavroidi B, Panagiotopoulou A, Methenitis C, Pelecanou M, Sagnou M (2020) (E)-(1-(4-Ethoxycarbonylphenyl)-5-(3,4-dimethoxyphenyl)-3-(3,4-dimetho-xystyryl)-2-pyrazoline: synthesis, characterization, DNA-interaction, and evaluation of activity against drug-resistant cell lines. Molbank 2020:M1114. https://doi.org/10.3390/M1114 | pl_PL |
dc.references | McMillan MK, Li L, Parker JB, Patel L, Zhong Z, Gunnett JW, Powers WJ, Johnson MD (2002) An Improved Resazurin-Based Cytotoxicity Assay for Hepatic Cells. Cell Biol Toxicol 18:157–173. https://doi.org/10.1023/a:1015559603643 | pl_PL |
dc.references | Nawaz S, Isab AA, Merz K, Vasylyeva V, Metzler-Nolte N, Saleem M, Ahmad S (2011) Synthesis, characterization and antimicrobial studies of mixed ligand silver(I) complexes of triphenylphosphine and heterocyclic thiones: Crystal structure of bis[{(μ2-diazinane-2-thione) (diazinane-2-thione)(triphenylphosphine)silver(I) nitrate}]. Polyhedron 30:1502–1506. https://doi.org/10.1016/j.poly.2011.02.054 | pl_PL |
dc.references | Njogu EM, Martincigh BS, Omondi B, Nyamori VO (2018) Synthesis, characterization, antimicrobial screening and DNA binding of novel silver(I)–thienylterpyridine and silver(I)–furylterpyridine complexes. Appl Organometal Chem 32:e4554. https://doi.org/10.1002/aoc.4554 | pl_PL |
dc.references | Njogu EM, Omondi B, Nyamori VO (2017) Silver(I)-pyridinyl Schiff base complexes: Synthesis, characterization and antimicrobial studies. J Mol Struct 1135:118–128. https://doi.org/10.1016/j.molstruc.2017.01.061 | pl_PL |
dc.references | O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426. https://doi.org/10.1046/j.1432-1327.2000.01606.x | pl_PL |
dc.references | Ovejero P, Asensio E, Heras JV, Campo JA, Cano M, Torres MR, Núñez C, Lodeiro C (2013) Silver–pyrazole complexes as hybrid multifunctional materials with metallomesogenic and photoluminescent behaviour. Dalton Trans 42:2107–2120. https://doi.org/10.1039/C2DT31750H | pl_PL |
dc.references | Pramanik S, Chatterjee S, Saha A, Devi PS, Suresh Kumar G (2016) Unraveling the Interaction of Silver Nanoparticles with Mammalian and Bacterial DNA. J Phys Chem B 120:5313–5324. https://doi.org/10.1021/acs.jpcb.6b01586 | pl_PL |
dc.references | Ravipati AS, Henriques ST, Poth AG, Kaas Q, Wang CK, Colgrave ML, Craik DJ (2015) Lysine-rich cyclotides: a new subclass of circular knotted proteins from violaceae. ACS Chem Biol 10:2491–2500. https://doi.org/10.1021/acschembio.5b00454 | pl_PL |
dc.references | Rendošová M, Vargová Z, Sabolová D, Imrichová N, Hudecová D, Gyepes R, Lakatoš B, Elefantová K (2018) Silver pyridine-2-sulfonate complex - its characterization, DNA binding, topoisomerase I inhibition, antimicrobial and anticancer response. J Inorg Biochem 186:206–216. https://doi.org/10.1016/j.jinorgbio.2018.06.006 | pl_PL |
dc.references | Sainis I, Banti CN, Owczarzak AM, Kyros L, Kourkoumelis N, Kubicki M, Hadjikakou SK (2016) New antibacterial, non-genotoxic materials, derived from the functionalization of the anti-thyroid drug methimazole with silver ions. J Inorg Biochem 160:114–124. https://doi.org/10.1016/j.jinorgbio.2015.12.013 | pl_PL |
dc.references | Schilcher K, Andreoni F, Dengler Haunreiter V, Seidl K, Hasse B, Zinkernagel AS (2016) Modulation of Staphylococcus aureus Biofilm Matrix by Subinhibitory Concentrations of Clindamycin. Antimicrob Agents Chemother 60:5957–5967. https://doi.org/10.1128/AAC.00463-16 | pl_PL |
dc.references | Sergei MM (2001) DNA Topology: Fundamentals. In e LS, (Ed.). https://doi.org/https://doi.org/10.1038/npg.els.0001038 | pl_PL |
dc.references | Shahabadi N, Hashempour S (2019) DNA binding studies of antibiotic drug cephalexin using spectroscopic and molecular docking techniques. Nucleosides Nucleotides Nucleic Acids 38(6):428–447. https://doi.org/10.1080/15257770.2018.1562071 | pl_PL |
dc.references | Shang W, Rao Y, Zheng Y, Yang Y, Hu Q, Hu Z, Yuan J, Peng H, Xiong K, Tan L, Li S, Zhu J, Li M, Hu X, Mao X, Rao X (2019) β-Lactam Antibiotics Enhance the Pathogenicity of Methicillin-Resistant Staphylococcus aureus via SarA-Controlled Lipoprotein-Like Cluster Expression. mBio. Doi: https://doi.org/10.1128/mBio.00880-19 | pl_PL |
dc.references | Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353. https://doi.org/10.1016/S0168-6445(03)00047-0 | pl_PL |
dc.references | Suh D, Chaires JB (1995) Criteria for the mode of binding of DNA binding agents. Bioorg Med Chem 3:723–728. https://doi.org/10.1016/0968-0896(95)00053-J | pl_PL |
dc.references | Sullivan M, Kia AFA, Long M, Walsh M, Kavanagh K, McClean S, Creaven BS (2014) Isolation and characterisation of silver(I) complexes of substituted coumarin-4-carboxylates which are effective against Pseudomonas aeruginosa biofilms. Polyhedron 67:549–559. https://doi.org/10.1016/j.poly.2013.09.042 | pl_PL |
dc.references | Wadt WR, Hay PJ (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–298. https://doi.org/10.1063/1.448800 | pl_PL |
dc.references | Wang S, Shao W, Li H, Liu C, Wang K, Zhang J (2011) Synthesis, Characterization and Cytotoxicity of the Gold(III) Complexes of 4,5-dihydropyrazole-1-carbothioamide Derivatives. Eur J Med Chem 46:1914–1918. https://doi.org/10.1016/j.ejmech.2011.02.031 | pl_PL |
dc.references | Waring MJ (1991) Binding of antibiotics to DNA, Ciba Foundation symposium 158:128–42; https://doi.org/https://doi.org/10.1002/9780470514085.ch9 | pl_PL |
dc.references | WHO factsheet sepsis, https://www.who.int/news-room/factsheets/detail/sepsis. Accessed 1 Nov 2018 | pl_PL |
dc.references | Wu H, Yuan J, Bai Y, Pan G, Wang H, Kong J, Fan X, Liu H (2012) Synthesis, structure, DNA-binding properties and antioxidant activity of silver(I) complexes containing V-shaped bis-benzimidazole ligands. Dalton Trans 41:8829–8838. https://doi.org/10.1039/c2dt30512g | pl_PL |
dc.references | Wu H, Zhang J, Chen C, Zhang H, Peng H, Wang F, Yang Z (2015) Synthesis, crystal structure, and DNA-binding studies of different coordinate binuclear silver(I) complexes with benzimidazole open-chain ether ligands. New J Chem 39:7172–7181. https://doi.org/10.1039/c5nj01684c | pl_PL |
dc.references | Yang L, Liu Y, Wu H, Song Z, Høiby N, Molin S, Givskov M (2012) Combating biofilms. FEMS Immunol Med Microbiol 65:146–157. https://doi.org/10.1111/j.1574-695X.2011.00858.x | pl_PL |
dc.identifier.doi | 10.1007/s10534-020-00263-z | |
dc.discipline | nauki biologiczne | pl_PL |