Show simple item record

dc.contributor.authorBorowczyk, Kamila
dc.contributor.authorOlejarz, Patrycja
dc.contributor.authorChwatko, Grażyna
dc.contributor.authorSzylberg, Marcin
dc.contributor.authorGłowacki, Rafał
dc.date.accessioned2021-09-09T07:12:25Z
dc.date.available2021-09-09T07:12:25Z
dc.date.issued2020
dc.identifier.citationBorowczyk K, Olejarz P, Chwatko G, Szylberg M, Głowacki R. A Simplified Method for Simultaneous Determination of α-Lipoic Acid and Low-Molecular-Mass Thiols in Human Plasma. International Journal of Molecular Sciences. 2020; 21(3):1049. https://doi.org/10.3390/ijms21031049pl_PL
dc.identifier.issn1422-0067
dc.identifier.urihttp://hdl.handle.net/11089/39006
dc.description.abstractα-Lipoic acid, glutathione, cysteine, and cysteinylglycine can be applied as therapeutic agents in civilization diseases such as diabetes mellitus, cardiovascular diseases, and cancers. On the other hand, a higher concentration of homocysteine can result in health problems and has been indicated as an independent risk factor for cardiovascular disease and accelerated atherosclerosis. Here, the first simplified HPLC-UV assay that enables simultaneous determination of α-lipoic acid and low-molecular-mass thiols in plasma, reduces the number of steps, shortens the total time of sample preparation, and limits the amount of single-use polypropylene laboratory materials is described. The assay is based on reversed-phase high performance liquid chromatography with UV detection and simultaneous reduction of disulfide bound with tris(2-carboxyethyl)phosphine and the selective pre-column derivatization of the thiol group with 1-benzyl-2-chloropyridinium bromide. Linearity in the detector responses for plasma samples were observed in ranges: 0.12–5.0 nmol mL−1 for α-lipoic acid; 2.0–20.0 nmol mL−1 for glutathione, cysteinylglycine, and homocysteine; and 40.0–400.0 for cysteine. The LODs for α-lipoic acid and low-molecular-mass thiols were 0.08 and 0.12 nmol mL−1 , respectively, while LOQs were 0.12 and 0.16 nmol mL−1 , respectively. The usefulness of the proposed method has been proven by its application to real samples.pl_PL
dc.language.isoenpl_PL
dc.publisherMDPIpl_PL
dc.relation.ispartofseriesInternational Journal of Molecular Sciences;21
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectα-lipoic acidpl_PL
dc.subjectlow-molecular-mass thiolspl_PL
dc.subjectsimultaneous reduction and derivatizationpl_PL
dc.subjecthigh performance liquid chromatographypl_PL
dc.subjectultraviolet detectionpl_PL
dc.titleA Simplified Method for Simultaneous Determination of α-Lipoic Acid and Low-Molecular-Mass Thiols in Human Plasmapl_PL
dc.typeArticlepl_PL
dc.page.number15pl_PL
dc.contributor.authorAffiliationDepartment of Environmental Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Environmental Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Environmental Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Łódź, Polandpl_PL
dc.contributor.authorAffiliationRehabilitation Center “Kraszewski”, Kraszewskiego 7/9, 93-161 Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Environmental Chemistry, Faculty of Chemistry, University of Lodz, Pomorska 163, 90-236 Łódź, Polandpl_PL
dc.referencesRahimlou, M.; Asadi, M.; Jahromi, N.B.; Mansoori, A. Alpha-lipoic acid (ALA) supplementation effect on glycemic and inflammatory biomarkers: A Systematic Review and meta-analysis. Clin. Nutr. ESPEN. 2019, 32, 16–28.pl_PL
dc.referencesFarhata, D.; Linceta, H. Lipoic acid a multi-level molecular inhibitor of tumorigenesis. BBA Rev. Cancer. 2020, 1873, 188317.pl_PL
dc.referencesGorąca, A.; Huk-Kolega, H.; Piechota, A.; Kleniewska, P.; Ciejka, E.; Skibska, B. Lipoic acid—biological activity and therapeutic potential. Pharmacol. Rep. 2011, 63, 849–858.pl_PL
dc.referencesGor ˛aca, A.; Huk-Kolega, H.; Piechota, A.; Kleniewska, P.; Ciejka, E.; Skibska, B. Lipoic acid—biological activity and therapeutic potential. Pharmacol. Rep. 2011, 63, 849–858.pl_PL
dc.referencesGolbidi, S.; Badranand, M.; Laher, I. Diabetes and alpha lipoic acid. Front. Pharmacol. 2011, 2, 69.pl_PL
dc.referencesWollin, S.D.; Jones, P.J. a-Lipoic acid and cardiovascular disease. J. Nutr. 2003, 133, 3327–3330.pl_PL
dc.referencesFeuerecker, B.; Pirsig, S.; Seidl, C.; Aichler, M.; Feuchtinger, A.; Bruchelt, G.; Senekowitsch-Schmidtke, R. Lipoic acid inhibits cell proliferation of tumor cells in vitro and in vivo. Cancer Biol. Ther. 2012, 13, 1425–1435.pl_PL
dc.referencesWaslo, C.; Bourdette, D.; Gray, N.; Wright, K.; Spain, R. Lipoic acid and other antioxidants as therapies for multiple sclerosis. Curr. Treat. Options Neurol. 2019, 21, 26.pl_PL
dc.referencesLiu, W.; Shi, L.; Li, S. The immunomodulatory effect of alpha-lipoic acid in autoimmune diseases. BioMed Res. Int. 2019, 8086257.pl_PL
dc.referencesHernández-Rabaza, V.; López-Pedrajas, R.; Almansa, I. Progesterone, lipoic acid, and sulforaphane as promising antioxidants for retinal diseases: A review. Antioxidants 2019, 8, 53.pl_PL
dc.referencesPocernich, C.B.; Butterfield, D.A. Elevation of glutathione as a therapeutic strategy in Alzheimer disease. Bioch. Biophys. Acta. 2012, 1822, 625–630.pl_PL
dc.referencesLiu, R.; Choi, J. Age-associated decline in gamma-glutamylcysteine synthetase gene expression in rats. Free Radic. Biol. Med. 2000, 28, 566–574.pl_PL
dc.referencesTsugawa, S.; Noda, Y.; Tarumi, R.; Mimura, Y.; Yoshida, K.; Iwata, Y.; Elsalhy, M.; Kuromiya, M.; Kurose, S.; Masuda, F.; et al. Glutathione levels and activities of glutathione metabolism enzymes in patients with schizophrenia: A systematic review and meta-analysis. J. Psychopharm. 2019, 33, 1199–1214.pl_PL
dc.referencesZmorzyński, S.; Świderska-Kołacz, G.; Koczkodaj, D.; Filip, A.A. Significance of polymorphisms and expression of enzyme-encoding genes related to glutathione in hematopoietic cancers and solid tumors. Biomed. Res. Int. 2015, 2015, 1–6.pl_PL
dc.referencesLu, S.C. Glutathione synthesis. Biochim. Biophys. Acta. 2014, 1830, 3143–3153.pl_PL
dc.referencesCorso, C.R.; Acco, A. Glutathione system in animal model of solid tumors: From regulation to therapeutic target. Crit. Rev. Oncol. Hematol. 2018, 128, 43–57.pl_PL
dc.referencesJakubowski, H. Homocysteine is a protein amino acid in humans. J. Biol. Chem. 2002, 277, 30425–30428.pl_PL
dc.referencesJakubowski, H. Homocysteine modification in protein structure/function and human disease. Physiol. Rev. 2019, 99, 555–604.pl_PL
dc.referencesSaeed, S.; Faramarz, F.; Mojtaba, S.; Davoodi, G.; Mahmoodian, M.; Fallah, N.; Darvish, S.; Karimi, A. Tehran Heart Center. Homocysteine, vitamin B12 and folate levels in premature coronary artery disease. BMC Cardiovasc. Disord. 2006, 6, 38.pl_PL
dc.referencesWang, H.; Jiang, X.; Yang, F.; Gaubatz, J.W.; Ma, L.; Magera, M.J.; Yang, X.F.; Berger, P.B.; Durante, W.; Pownall, H.J.; et al. Hyperhomocysteinemia accelerates atherosclerosis in cystathionine beta-synthase and apolipoprotein E double knock-out mice with and without dietary perturbation. Blood 2003, 101, 3901–3907.pl_PL
dc.referencesDong, X.; Yao, Z.; Hu, Y.; Yang, N.; Gao, X.; Xu, Y.; Wang, G. Potential harmful correlation between homocysteine and low-density lipoprotein cholesterol in patients with hypothyroidism. Medicine 2016, 95, e4291.pl_PL
dc.referencesChwatko, G.; Krawczyk, M.; Iciek, M.; Kamińska, A.; Bilska-Wilkosz, A.; Marcykiewicz, B.; Głowacki, R. Determination of lipoic acid in human plasma by high-performance liquid chromatography with ultraviolet detection. Arab. J. Chem. 2019, 12, 4878–4886.pl_PL
dc.referencesWitt, W.; Rustow, B. Determination of lipoic acid by precolumn derivatization with monobromobimane and reversed-phase high-performance liquid chromatography. J. Chromatogr. B 1998, 705, 127–131.pl_PL
dc.referencesSatoh, S.; Toyo’oka, T.; Fukushima, T.; Inagaki, S. Simultaneous determination of α-lipoic acid and its reduced form by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. B. 2007, 854, 109–115.pl_PL
dc.referencesBorowczyk, K.; Olejarz, P.; Chwatko, G. Application of simultaneous separation and derivatization for the determination of α-lipoic acid in urine samples by high-performance liquid chromatography with spectrofluorimetric detection. Biomed. Chromatogr. 2019, 33, e4576.pl_PL
dc.referencesKhan, A.; Iqbal, Z.; Watson, D.G.; Khan, A.; Khan, I.; Muhammad, N.; Muhammad, S.; Nasib, H.A.; Iqbal, N.; Faiz-ur-rehman Kashif, M. Simultaneous determination of lipoic acid (LA) and dihydrolipoic acid (DHLA) in human plasma using high performance liquid chromatography coupled with electrochemical detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2011, 879, 1725–1731.pl_PL
dc.referencesKhan, M.I.; Iqbal, Z.; Ahmad, L. Simultaneous determination of the endogenous free a-lipoic acid and dihydrolipoic acid in human plasma and erythrocytes by RP-HPLC with electrochemical detection. Chromatographia 2011, 73, 929–939.pl_PL
dc.referencesMontero, O.; Ramırez, M.; Sanchez-Guijo, A.; Gonzalez, C. Determination of lipoic acid, Trolox methyl ether and tocopherols in human plasma by liquid-chromatography and ion-trap tandem mass spectrometry. Biomed. Chromatogr. 2012, 26, 1228–1233.pl_PL
dc.referencesKuśmierek, K.; Chwatko, G.; Głowacki, R.; Kubalczyk, P.; Bald, E. Ultraviolet derivatization of low-molecular-mass thiols for high performance liquid chromatography and capillary electrophoresis analysis. J. Chromatogr. B. 2011, 879, 1290–1307.pl_PL
dc.referencesBorowczyk, K.; Krawczyk, M.; Kubalczyk, P.; Chwatko, G. Determination of lipoic acid in biological samples. Bioanalysis 2015, 7, 1785–1798.pl_PL
dc.referencesBorowczyk, K.; Wyszczelska-Rokiel, M.; Kubalczyk, P.; Głowacki, R. Simultaneous determination of albumin and low-molecular-mass thiols in plasma by HPLC with UV detection. J. Chromatogr. B. 2015, 981, 57–64.pl_PL
dc.referencesKuśmierek, K.; Bald, E. Reversed-phase liquid chromatography method for the determination of total plasma thiols after derivatization with 1-benzyl-2-chloropyridinium bromide. Biomed. Chromatogr. 2009, 23, 770–775.pl_PL
dc.referencesGłowacki, R.; Bald, E.; Jakubowski, H. Identification and origin of Nε-homocysteinyl-lysine isopeptide in humans and mice. Amino Acids. 2010, 39, 1563–1569.pl_PL
dc.referencesKuśmierek, K.; Chwatko, G.; Głowacki, R.; Bald, E. Determination of endogenous thiols and thiol drugs in urine by HPLC with ultraviolet detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009, 877, 3300–3308.pl_PL
dc.referencesKamińska, A.; Głowacka, I.E.; Pasternak, B.; Głowacki, R.; Chwatko, G. The first method for determination of lipoyllysine in human urine after oral lipoic acid supplementation. Bioanalysis 2019, 11, 1359–1373.pl_PL
dc.referencesChwatko, G.; Kubalczyk, P.; Bald, E. Determination of lipoic acid in the form of 2-S-pyridinium derivative by high-performance liquid chromatography with ultraviolet detection. Curr. Org. Chem. 2014, 10, 320–325.pl_PL
dc.referencesAtukeren, P.; Aydin, S.; Uslu, E.; Gumustas, M.K.; Cakatay, U. Redox homeostasis of albumin in relation to alpha-lipoic acid and dihydrolipoic acid. Oxidat. Med. Cell. Longev. 2010, 3, 206–213.pl_PL
dc.referencesKawakami, A.; Kubota, K.; Yamada, N.; Tagami, U.; Takehana, K.; Sonaka, I.; Suzuki, E.; Hirayama, K. Identification and characterization of oxidized human serum albumin. A slight structural change impairs its ligand-binding and antioxidant functions. FEBS J. 2006, 273, 3346–3357.pl_PL
dc.referencesChng, H.T.; New, L.S.; Neo, A.H.; Goh, C.W.; Browne, E.R.; Chan, E.C.Y. A sensitive LC/MS/MS bioanalysis assay of orally administered lipoic acid in rat blood and brain tissue. J. Pharm. Biomed. Anal. 2010, 51, 754–757.pl_PL
dc.referencesKhan, A.; Khan, M.I.; Iqbal, Z.; Ahmad, L.; Shah, Y.; Watson, D.G. Determination of lipoic acid in human plasma by HPLC ECD using liquid–liquid and solid-phase extraction: Method development, validation and optimization of experimental parameters. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 2782–2788.pl_PL
dc.referencesBald, E.; Chwatko, G.; Głowacki, R.; Kuśmierek, K. Analysis of plasma thiols by high-performance liquid chromatography with ultraviolet detection. J. Chromatogr. A. 2004, 1032, 109–115.pl_PL
dc.referencesGłowacki, R.; Bald, E. Fully automated method for simultaneous determination of total cysteine, cysteinylglycine, glutathione and homocysteine in plasma by HPLC with UV absorbance detection. J. Chromatogr. B 2009, 877, 3400–3404.pl_PL
dc.referencesFDA. Guidance for Industry Bioanalytical Method Validation. Available online: http://www.fda.gov/downloads/Drugs/Guidance/ucm070107.pdf (accessed on 6 March 2019).pl_PL
dc.referencesEuropean Medicines Agency (EMA); Committee for Medicinal Products for Human Use (CHMP). Guideline on Bioanalytical Method Validation. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf (accessed on 13 May 2019).pl_PL
dc.referencesBald, E.; Sypniewski, S.; Drzewoski, J.; Stępień, M. Application of 2-halopyridinium salts as ultraviolet derivatization reagents and solid-phase extraction for determination of captopril in human plasma by high-performance liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 1996, 681, 283–289.pl_PL
dc.referencesBorowczyk, K.; Olejarz, P.; Kamińska, A.; Głowacki, R.; Chwatko, G. Application of butylamine as a conjugative reagent to on-column derivatization for the determination of antioxidant amino acids in brain tissue, plasma, and urine samples. Int. J. Mol. Sci. 2019, 20, 3340.pl_PL
dc.identifier.doihttps://doi.org/10.3390/ijms21031049
dc.disciplinenauki chemicznepl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa 4.0 Międzynarodowe