Pokaż uproszczony rekord

dc.contributor.authorWielanek, Marzena
dc.contributor.authorSkłodowska, Maria
dc.contributor.authorMikiciński, Artur
dc.contributor.authorKuźniak, Elżbieta
dc.contributor.authorSobiczewski, Piotr
dc.date.accessioned2021-09-07T14:04:50Z
dc.date.available2021-09-07T14:04:50Z
dc.date.issued2018
dc.identifier.citationSkłodowska, M., Mikiciński, A., Wielanek, M. et al. Phenolic profiles in apple leaves and the efficacy of selected phenols against fire blight (Erwinia amylovora). Eur J Plant Pathol 151, 213–228 (2018). https://doi.org/10.1007/s10658-017-1368-5pl_PL
dc.identifier.issn0929-1873
dc.identifier.urihttp://hdl.handle.net/11089/38999
dc.description.abstractThe content and type of phenolic compounds in apple leaves as potential markers of resistance to fire blight were analysed. The amounts of phenolic acids and flavonoids were determined before and after E. amylovora inoculation of leaves of two cultivars: ‘Enterprise’ (highly resistant) and ‘Idared’ (highly susceptible). The basic levels of phenolics in both cultivars was similar but, following the inoculation, in the resistant one faster and more distinguishable changes were observed. The difference between the cultivars was related to the content of the compounds and the rate of release of free phenols from their glucosides. Regarding age dependency, the levels of eight out of 15 phenolics was significantly higher in young leaves of ‘Idared” than in ‘Enterprise’. In the older leaves the differences were limited to four compounds. The amount of salicylic acid in ‘Idared’ was lower than in ‘Enterprise’. In ‘Idared’ accumulation of salicylate after infection was better pronounced than in ‘Enterprise’. Higher levels of naringenin glucosides, 4-hydroxbenzoic acid and gentisic acid were found in ‘Enterprise’. The activity of 13 phenolics tested in vitro against the pathogen showed that gallic acid, phloroglucinol, hydroquinone and phloretin, suppressed its growth. The aqueous solutions of gallic acid, phloroglucinol and hydroquinone also significantly limited the development of disease on pear fruitlet slices but only hydroquinone maintained its protective activity for longer time. It also showed very high efficacy in preventing disease spread on apple shoots. The study adds novel information on the contribution of specific phenolics to apple resistance to fire blight.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringerpl_PL
dc.relation.ispartofseriesEuropean Journal of Plant Pathology;151
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMalus domesticapl_PL
dc.subjectPhenolic acidspl_PL
dc.subjectFlavonoidspl_PL
dc.subjectApple resistancepl_PL
dc.subjectDisease controlpl_PL
dc.titlePhenolic profiles in apple leaves and the efficacy of selected phenols against fire blight (Erwinia amylovora)pl_PL
dc.typeArticlepl_PL
dc.page.number213–228pl_PL
dc.contributor.authorAffiliationDepartment of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 12/16 Banacha Str., 90-237, Łódź, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 12/16 Banacha Str., 90-237, Łódź, Polandpl_PL
dc.contributor.authorAffiliationResearch Institute of Horticulture, 18 Pomologiczna Str., 96-100, Skierniewice, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 12/16 Banacha Str., 90-237, Łódź, Polandpl_PL
dc.contributor.authorAffiliationResearch Institute of Horticulture, 18 Pomologiczna Str., 96-100, Skierniewice, Polandpl_PL
dc.identifier.eisbn1573-8469
dc.referencesBell, A. C., Ranney, T. G., & Eaker, T. A. (2002). Role of endogenous phenolics in resistance to fire blight among flowering crabapples (Malus spp.) Proceedings of SNA Research Conference, 47, 202–206.pl_PL
dc.referencesBonasera, J. M., Kim, J. F., & Beer, S. V. (2006). PR genes of apple: identification and expression in response to elicitors and inoculation with Erwinia amylovora. BMC Plant Biology, 6, 23–35.pl_PL
dc.referencesChang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10, 178–182.pl_PL
dc.referencesCheynier, V., Comte, G., Davies, K. M., Lattanzio, V., & Martens, S. (2013). Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry, 72, 1–20.pl_PL
dc.referencesDao, T. T. H., Linthorst, H. J. M., & Verpoorte, R. (2011). Chalcone synthase and its functions in plant resistance. Phytochemistry Reviews, 10, 397–412.pl_PL
dc.referencesDugé de Bernonville, T., Gaucher, M., Guyot, S., Durel, C. E., Dat, J. F., & Brisset, M. N. (2011). The constitutive phenolic composition of two Malus domestica genotypes is not responsible for their contrasted susceptibilities to fire blight. Environmental and Experimental Botany, 74, 65–73.pl_PL
dc.referencesDugé de Bernonville, T., Gaucher, M., Flors, V., Gaillarda, S., Paulina, J. P., Data, J. F., & Brisset, M. N. (2012). T3SS-dependent differential modulations of the jasmonic acid pathway in susceptible and resistant genotypes of Malus spp. challenged with Erwinia amylovora. Plant Science, 188–189, 1–9.pl_PL
dc.referencesFischer, T. C., Gosch, C., Pfeiffer, J., Thilo, C., Gosch, C., Pfeiffer, J., Halbwirth, H., Halle, C., Stich, K., & Forkmann, G. (2007). Flavonoid genes of pear (Pyrus communis). Trees Structure and Function, 21, 521–529.pl_PL
dc.referencesGlazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Review of Phytopathology, 43, 205–227.pl_PL
dc.referencesGosch, C., Halbwirth, H., & Stich, K. (2010). Phloridzin: biosynthesis, distribution and physiological relevance in plants. Phytochemistry, 71, 838–843.pl_PL
dc.referencesGunen, Y., Misirli, A., & Gulcan, R. (2005). Leaf phenolic content of pear cultivars resistant or susceptible to fire blight. Scientia Horticulturae, 105, 213–221.pl_PL
dc.referencesHernández, I., Alegre, L., Van Breusegem, F., & Munné-Bosch, S. (2009). How relevant are flavonoids as antioxidants in plants? Trends in Plant Science, 14, 125–132.pl_PL
dc.referencesIakimova, E. T., Sobiczewski, P., Michalczuk, L., Wegrzynowicz-Lesiak, E., Mikiciński, A., & Woltering, E. J. (2013). Morphological and biochemical characterization of Erwinia amylovora induced hypersensitive cell death in apple leaves. Plant Physiology and Biochemistry, 63, 292–305.pl_PL
dc.referencesJensen, P. J., Halbrendt, N., Fazio, G., Makalowska, I., Altman, N., Praul, C., Maximova, S. N., Ngugi, H. K., Crassweller, R. M., Travis, J. W., & McNellis, T. W. (2012). Rootstock-regulated gene expression patterns associated with fire blight resistance in apple. BMC Genomics, 13, 9.pl_PL
dc.referencesKhan, M. A., Zhao, Y., & Korban, S. S. (2012). Molecular mechanisms of pathogenesis and resistance to the bacterial pathogen Erwinia amylovora, causal agent of fire blight disease in Rosaceae. Plant Molecular Biology Reporter, 30, 247–260.pl_PL
dc.referencesKumar, D. (2014). Salicylic acid signaling in disease resistance. Plant Science, 228, 127–134.pl_PL
dc.referencesMarkakis, E. A., Tjamos, S. E., Antoniou, P. P., Roussos, P. A., Paplomatas, E. J., & Tjamos, E. C. (2010). Phenolic responses of resistant and susceptible olive cultivars induced by defoliating and nondefoliating Verticillium dahliae pathotypes. Plant Disease, 94, 1156–1162.pl_PL
dc.referencesMikulic-Petkovśek, M., Stampar, F., & Veberic, R. (2008). Increased phenolic content in apple leaves infected with the apple scrab pathogens. Journal of Plant Pathology, 90, 49–55.pl_PL
dc.referencesMilčevičová, R., Gosch, C., Halbwirth, H., Stich, K., Hanke, M. V., Peil, A., Flachowsky, H., Rozhon, W., Jonak, C., Oufir, M., & Hausman, J. F. (2010). Erwinia amylovora-induced defense mechanisms of two apple species that differ in susceptibility to fire blight. Plant Science, 179, 60–67.pl_PL
dc.referencesPontais, I., Treutter, D., Paulin, J. P., & Brisset, M. N. (2008). Erwinia amylovora modifies phenolic profiles of susceptible and resistant apple through its type III secretion system. Physiologia Plantarum, 132, 262–271.pl_PL
dc.referencesRobert-Seilaniantz, A., Navarro, L., Bari, R., & Jones, J. D. (2007). Pathological hormone imbalances. Current Opinion in Plant Biology, 10, 372–379.pl_PL
dc.referencesRoemmelt, S., Plagge, J., Treutter, D., Gutmann, M., Feucht, W., & Zeller, W. (1999). Defense reaction of apple against fire blight: histological and biochemical studies. Acta Horticulturae, 489, 335–336.pl_PL
dc.referencesSingleton, V. Z., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.pl_PL
dc.referencesSkłodowska, M., Gajewska, E., Kuźniak, E., Wielanek, M., Mikicinski, A., & Sobiczewski, P. (2011a). Antioxidant profile and polyphenol oxidase activities in apple leaves after Erwinia amylovora infection and pretreatment with a benzothiadiazole-type resistance inducer (BTH). Journal of Phytopathology, 159, 495–504.pl_PL
dc.referencesSkłodowska, M., Gajewska, E., Kuźniak, E., Wielanek, M., Mikiciński, A., & Sobiczewski, P. (2011b). Phenolic profile and peroxidase activity in apple leaves after Erwinia amylovora infection and BTH treatment. Acta Horticulturae, 896, 489–494.pl_PL
dc.referencesSobiczewski, P., & Millikan, D. F. (1985). Efficacy of chemicals for control of fire blight (Erwinia amylovora). Fruit Science Reports, 12, 27–34.pl_PL
dc.referencesSobiczewski, P., Peil, A., Mikiciński, A., Richter, K., Lewandowski, M., Żurawicz, E., & Kellerhals, M. (2015). Susceptibility of apple genotypes from European genetic resources to fire blight (Erwinia amylovora). European Journal of Plant Pathology, 141, 51–62.pl_PL
dc.referencesSobiczewski, P., Iakimova, E. T., Mikiciński, A., Węgrzynowicz-Lesiak, E., & Dyki, B. (2016). Necrotrophic behaviour of Erwinia amylovora in apple and tobacco leaf tissue. Plant Pathology. https://doi.org/10.1111/ppa.12631.pl_PL
dc.referencesTreutter, D. (2001). Biosynthesis of phenolic compounds and its regulation in apple. Plant Growth Regulation, 34, 71–89.pl_PL
dc.referencesTreutter, D. (2005). Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biology, 7, 581–591.pl_PL
dc.referencesVan der Zwet, T., Orolaza-Halbrendt, N., & Zeller, W. (2012). Fire blight: History, biology and management. St. Paul: APS Press.pl_PL
dc.referencesVenisse, J. S., Gullner, G., & Brisset, M. N. (2001). Evidence for the involvement of an oxidative stress in the initiation of infection of pear by Erwinia amylovora. Plant Physiology, 125, 2164–2172.pl_PL
dc.referencesVenisse, J. S., Malnoy, M., Faize, M., Paulin, J. P., & Brisset, M. N. (2002). Modulation of defense responses of Malus spp. during compatible and incompatible interactions with Erwinia amylovora. Molecular Plant-Microbe Interactions, 15, 1204–1212pl_PL
dc.referencesVenisse, J. S., Barny, M. A., Paulin, J. P., & Brisset, M. N. (2003). Involvement of three pathogenicity factors of Erwinia amylovora in the oxidative stress associated with compatible interaction in pear. FEBS Letters, 537, 198–202.pl_PL
dc.referencesVrancken, K., Holtappels, M., Schoofs, H., Deckers, T., Treutter, D., & Valcke, R. (2013). Erwinia amylovora affects the phenylpropanoide flavonoid pathway in mature leaves of Pyrus communis cv. Conférence. Plant Physiology and Biochemistry, 72, 134–144.pl_PL
dc.referencesWildermuth, M. C., Dewdney, J., Wu, G., & Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414, 562–565.pl_PL
dc.referencesYin, L., Zou, Y., Ke, X., Liang, D., Du, X., Zhao, Y., Zhang, Q., & Ma, F. (2013). Phenolic responses of resistant and susceptible Malus plants induced by Diplocarpon mali. Scientia Horticulturae, 164, 17–23.pl_PL
dc.referencesZhao, J., & Dixon, R. A. (2009). The ‘ins’ and ‘outs’ of flavonoid transport. Trends in Plant Science, 15, 72–80.pl_PL
dc.identifier.doi10.1007/s10658-017-1368-5
dc.disciplinenauki biologicznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe