Pokaż uproszczony rekord

dc.contributor.authorBednarek, Agnieszka
dc.contributor.authorKiedrzyńska, Edyta
dc.contributor.authorUrbaniak, Magdalena
dc.contributor.authorKiedrzyński, Marcin
dc.contributor.authorJóźwik, Adam
dc.contributor.authorGągała, Ilona
dc.contributor.authorZalewski, Maciej
dc.date.accessioned2021-08-31T16:30:58Z
dc.date.available2021-08-31T16:30:58Z
dc.date.issued2017
dc.identifier.citationKiedrzyńska, E., Urbaniak, M., Kiedrzyński, M. et al. The use of a hybrid Sequential Biofiltration System for the improvement of nutrient removal and PCB control in municipal wastewater. Sci Rep 7, 5477 (2017). https://doi.org/10.1038/s41598-017-05555-ypl_PL
dc.identifier.urihttp://hdl.handle.net/11089/38969
dc.description.abstractThis article aims to evaluate the efficiency of an innovative hybrid Sequential Biofiltration System (SBS) for removing phosphorus and nitrogen and polychlorinated biphenyls (PCBs) from original municipal wastewater produced by a Wastewater Treatment Plant under authentic operating conditions. The hybrid SBS was constructed with two barriers, a geochemical (filtration beds with limestone, coal and sawdust) and a biological barrier (wetlands with Glyceria, Acorus, Typha, Phragmites), operating in parallel. Significant differences were found between inflow and outflow from the SBS with regard to wastewater contaminant concentrations, the efficiency of removal being 16% (max. 93%) for Total Phosphorus (TP), 25% (max. 93%) for Soluble Reactive Phosphorus (SRP), 15% (max. 97%) for Total Nitrogen (TN), 17% (max. 98%) for NO3 –N, and 21% for PCB equivalency (PCB EQ). In the case of PCB EQ concentration, the highest efficiency of 43% was obtained using beds with macrophytes. The SBS removed a significant load of TP (0.415 kg), TN (3.136 kg), and PCB EQ (0.223 g) per square meter per year. The use of low-cost hybrid SBSs as a post-treatment step for wastewater treatment was found to be an effective ecohydrological biotechnology that may be used for reducing point source pollution and improving water quality.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringer Naturepl_PL
dc.relation.ispartofseriesScientific Reports;7
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectPollution remediationpl_PL
dc.subjectHydrologypl_PL
dc.subjectElement cyclespl_PL
dc.titleThe use of a hybrid Sequential Biofiltration System for the improvement of nutrient removal and PCB control in municipal wastewaterpl_PL
dc.typeArticlepl_PL
dc.page.number14pl_PL
dc.contributor.authorAffiliationDepartment of Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Banacha 12/16, 90-237, Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Banacha 12/16, 90-237, Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Banacha 12/16, 90-237, Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Banacha 12/16, 90-237, Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Informatics, Faculty of Physics and Applied Informatics, University of Lodz, Pomorska 149/153, 90-236, Lodz, Polandpl_PL
dc.contributor.authorAffiliationEuropean Regional Centre for Ecohydrology of the Polish Academy of Sciences, ul. Tylna 3, 90-364, Lodz, Polandpl_PL
dc.contributor.authorAffiliationDepartment of Applied Ecology, Faculty of Biology and Environmental Protection, University of Lodz, ul. Banacha 12/16, 90-237, Lodz, Polandpl_PL
dc.referencesHan, H., Bosch, N. & Allan, J. D. Spatial and temporal variation in phosphorus budgets for 24 watersheds in the Lake Erie and Lake Michigan basins. Biogeochemistry 102, 45–58 (2011).pl_PL
dc.referencesKiedrzyńska, E., Jóźwik, A., Kiedrzyński, M. & Zalewski, M. Hierarchy of factors exerting an impact on nutrient load of the Baltic Sea and sustainable management of its drainage basin. Mar. Pollut. Bull. 88, 162–173 (2014a).pl_PL
dc.referencesKiedrzyńska, E. et al. Point sources of nutrient pollution in the lowland river catchment in the context of the Baltic Sea eutrophication. Ecol. Eng. 70, 337–348 (2014b).pl_PL
dc.referencesRai, U. N. et al. Constructed wetland as an ecotechnological tool for pollution treatment for conservation of Ganga river. Bioresource Technol. 148, 535–541 (2013).pl_PL
dc.referencesChen, Y. et al. Effects of plant biomass on bacterial community structure in constructed wetlands used for tertiary wastewater treatment. Ecol. Eng. 84, 38–45 (2015).pl_PL
dc.referencesWang, W. et al. Intensified nitrogen removal in immobilized nitrifier enhanced constructed wetlands with external carbon addition. Bioresource Technol. 218, 1261–1265 (2016).pl_PL
dc.referencesUrbaniak, M., Kiedrzyński, E., Mendra, M. & Grochowalski, A. The impact of point sources of pollution on the transport of micropollutants along the river continuum. Hydrol. Res. 45(3), 391–410 (2014).pl_PL
dc.referencesUrbaniak, M. & Kiedrzyńska, E. Concentrations and Toxic Equivalency of Polychlorinated Biphenyls in Polish Wastewater Treatment Plant Effluents. B. Environ. Contam. Tox. 95, 530–535 (2015).pl_PL
dc.referencesUS EPA, U.S. Environmental Protection Agency. Health Effects of PCBs. Accessed: March 26 https://www.epa.gov/pcbs/learn-about-polychlorinated-biphenyls-pcbs#healtheffects (2014).pl_PL
dc.referencesShe, J. et al. Levels, Trends, and Health Effects of Dioxins and Related Compounds in Aquatic Biota. In: The Handbook of Environmental Chemistry Dioxin and Related Compounds (ed. Alaee, M.) 49, 153–202 (2016).pl_PL
dc.referencesKatsoyiannis, A. & Samara, C. Persistent organic pollutants (POPs) in the conventional activated sludge treatment process: fate and mass balance. Environ. Res. 97, 245–257 (2005).pl_PL
dc.referencesBergqvist, P. A., Augulyte, L. & Jurjoniene, V. PAH and PCB removal efficiencies in Umea (Sweden) and Sialial (Lithuania) municipal wastewater treatment plants. Water Air Soil Pollut. 175, 291–303 (2006).pl_PL
dc.referencesKatsoyiannis, A. & Samara, C. Comparison of active and passive sampling for the determination of persistent organic pollutants (POPs) in sewage treatment plants. Chemosphere 67, 1375–1382 (2007).pl_PL
dc.referencesCirja, M., Ivashechkin, P., Schaffer, A. & Corvine, P. G. F. X. Factors affecting the removal of organic micropollutants from wastewater in conventional treatment plants (CTP) and membrane bioreactors (MBR). Rev. Environ. Sci. Biotechnol. 7, 61–78 (2008).pl_PL
dc.referencesDeblonde, T., Cossu-Leguille, C. & Hartemann, P. Emerging pollutants in wastewater: a review of the literature. Int. J. Hyg. Environ. Health 214, 442–448 (2011).pl_PL
dc.referencesJelic, A. et al. Occurrence, partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment. Water Res. 45, 1165–1176 (2011).pl_PL
dc.referencesSyakti, A. D. et al. Distribution of organochlorine pesticides (OCs) and polychlorinated biphenyls (PCBs) in marine sediments directly exposed to wastewater from Cortiou. Marseille. Environ. Sci. Pollut. Res. 19, 1524–1535 (2012).pl_PL
dc.referencesZalewski, M. Ecohydrology for implementation of the EU Water Framework Directive. Proc. Inst. Civil. Eng. Water Manag. 164(8), 375–385 (2011).pl_PL
dc.referencesZalewski, M. Ecohydrology–process oriented thinking for sustainability of river basins. Ecohydrol. Hydrobiol. 12(2), 89–92 (2012).pl_PL
dc.referencesZalewski, M. Ecohydrology and hydrologic engineering: regulation of hydrology-biota interactions for sustainability. J. Hydrol. Eng. A4014012. doi:10.1061/(ASCE)HE.1943-5584.0000999 (2014).pl_PL
dc.referencesMitsch, W. J., Day, J. W., Zhang, L. & Lane, R. R. Nitrate-nitrogen retention in wetlands in the Mississippi River Basin. Ecol. Eng. 24, 267–278 (2005).pl_PL
dc.referencesO’Launaigh, N., Goodhue, R. & Gill, L. Nutrient removal from onsite domestic wastewater in horizontal subsurface flow reed beds in Ireland. Ecol. Eng. 36, 1266–1276 (2010).pl_PL
dc.referencesHarrington, R. & McInnes, R. Integrated Constructed Wetlands (ICW) for livestock wastewater management. Bioresour. Technol. 100, 5498–5505 (2009).pl_PL
dc.referencesDiaz, F. J., O’Geen, A. T. & Dahlgren, R. A. Agricultural pollutant removal by constructed wetlands: Implications for water management and design. Agr. Water Manage. 104, 171–183 (2012).pl_PL
dc.referencesZalewski, M. Ecohydrology, biotechnology and engineering for cost efficiency in reaching the sustainability of biogeosphere. Ecohydrol. Hydrobiol. 14, 14–20 (2014).pl_PL
dc.referencesKadlec, R. H. & Wallace, S. D. Treatment Wetlands, second ed, CRC Press, Boca Raton, FL, USA (2009).pl_PL
dc.referencesMei, X.-Q., Yang, Y., Tam, N. F.-Y., Wang, Y.-W. & Li, L. Roles of root porosity, radial oxygen loss, Fe plaque formation on nutrient removal and tolerance of wetland plants to domestic wastewater. Water Res. 50, 147–159 (2014).pl_PL
dc.referencesMitsch, W. J. & Gosselink, J. G. Wetlands 5th Edition. Wiley. 456 (2015).pl_PL
dc.referencesKiedrzyńska, E., Wagner-Łotkowska, I. & Zalewski, M. Quantification of phosphorus retention efficiency by floodplain vegetation 2008. and a management strategy for a eutrophic reservoir restoration. Ecol. Eng. 33, 15–25 (2008).pl_PL
dc.referencesSkłodowski, M. et al. The role of riparian willows in phosphorus accumulation and PCB control for lotic water quality improvement. Ecol. Eng. 70, 1–10 (2014).pl_PL
dc.referencesKiedrzyńska, E., Kiedrzyński, M. & Zalewski, M. Sustainable floodplain management for flood prevention and water quality improvement. Nat. Hazards 76, 955–977 (2015).pl_PL
dc.referencesLarue, C., Korboulewsky, N., Wang, R. & Mévy, J. P. Depollution potential of three macrophytes: exudated, wall-bound and intracellular peroxidase activities plus intracellular phenol concentrations. Bioresource Technol. 101, 7951–7957 (2010).pl_PL
dc.referencesGuittonny-Philippe, A. et al. Constructed wetlands to reduce metal pollution from industrial catchments in aquatic Mediterranean ecosystems: A review to overcome obstacles and suggest potential solutions. Environ. Int. 64, 1–16 (2014).pl_PL
dc.referencesOng, S., Uchiyama, K., Inadama, D., Ishida, Y. & Yamagiwa, K. Performance evaluation of laboratory scale up-flow constructed wetlands with different designs and emergent plants. Bioresource Technol. 101, 7239–7244 (2010).pl_PL
dc.referencesO’Neill, A., Foy, R. H. & Phillips, D. H. Phosphorus retention in a constructed wetland system used to treat dairy wastewater. Bioresource Technol. 102, 5024–5031 (2011).pl_PL
dc.referencesBowden, L. I., Jarvis, A. P., Younger, P. L. & Johnson, K. L. Phosphorus removal from wastewaters using basic oxygen steel slag. Environ. Sci. Technol. 43(7), 2476–2481 (2009).pl_PL
dc.referencesChen, Y. et al. Effects of dissolved oxygen on extracellular enzymes activities and transformation of carbon sources from plant biomass: Implications for denitrification in constructed wetlands. Bioresource Technol. 102, 2433–2440 (2011).pl_PL
dc.referencesBarca, C. et al. Steel Slag Filters to Upgrade Phosphorus Removal in Constructed Wetlands: Two Years of Field Experiments. Environ. Sci. Technol. 47, 549–556 (2013).pl_PL
dc.referencesLi, F. et al. Enhanced nitrogen removal in constructed wetlands: Effects of dissolved oxygen and step-feeding. Bioresource Technol. 169, 395–402 (2014).pl_PL
dc.referencesImfeld, G., Braeckevelt, M., Kuschk, P. & Richnow, H. H. Monitoring and assessing processes of organic chemicals removal in constructed wetlands. Chemosphere 74, 349–362 (2009).pl_PL
dc.referencesAntoniadis, A., Takavakoglou, V., Zalidis, G., Darakas, E. & Poulios, I. Municipal wastewater treatment by sequential combination of photocatalytic oxidation with constructed wetlands. Catal. Today 151, 114–118 (2010).pl_PL
dc.referencesNegussie, Y. Z. et al. Efficiency analysis of two sequential biofiltration system in Poland and Ethiopia–the pilot study. Ecohydrol. Hydrobiol. 12(4), 271–285 (2012).pl_PL
dc.referencesAbou-Elela, S. I. & Hellal, M. S. Municipal wastewater treatment using vertical flow constructed wetlands planted with Canna, Phragmites and Cyprus. Ecol. Eng. 47, 209–213 (2012).pl_PL
dc.referencesVymazal, J. Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecol. Eng. 25, 478–490 (2009).pl_PL
dc.referencesVymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 380, 48–65 (2007).pl_PL
dc.referencesTruu, M., Juhanson, J. & Truu, J. Microbial biomass, activity and community composition in constructed wetlands. Sci. Total Environ. 407(13), 3958–3971 (2009).pl_PL
dc.referencesVymazal, J. Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia 674(1), 133–156 (2011).pl_PL
dc.referencesKorboulewsky, N., Wang, R. & Baldy, V. Purification process involved in sludge treatment by a vertical flow wetland system: focus on the role of the substrate and plants on N and P removal. Bioresour. Technol. 105, 9–14 (2012).pl_PL
dc.referencesJing, S. R., Lin, Y. F., Lee, D. Y. & Wang, T. W. Nutrient removal from polluted river water by using constructed wetlands. Bioresour. Technol. 76, 131–135 (2001).pl_PL
dc.referencesGreenway, M. & Woolley, A. Constructed wetlands in Queensland: performance efficiency and nutrient bioaccumulation. Ecol. Eng. 12, 39–55 (1999).pl_PL
dc.referencesBrix, H. & Arias, C. A. The use of vertical flow constructed wetlands for onsite treatment of domestic wastewater: new Danish guidelines. Ecol. Eng. 25, 491–500 (2005).pl_PL
dc.referencesBednarek, A., Szklarek, S. & Zalewski, M. Nitrogen pollution removal from area of intensive farming–comparison of various denitrification biotechnologies. Ecohydrol. Hydrobiol. 14, 132–141 (2014).pl_PL
dc.referencesMankiewicz-Boczek, J. et al. Microbiologically activated barriers for removal of nitrogen compounds from farm sewage. New Biotechnol. 33(5), S130 (2016).pl_PL
dc.referencesNewman, L. A. & Reynolds, C. M. Phytodegradation of organic compounds. Cur. Opin. Biotechnol. 15, 225–230 (2004).pl_PL
dc.referencesChu, W. K., Wong, M. H. & Zhang, J. Accumulation distribution and transformation of DDT and PCBs by Phragmites australis and Oryza sativa L: II. Enzyme study. Environ. Geochem. Health 28, 169–181 (2006).pl_PL
dc.referencesToro-Valez, A. F. et al. BPA and NP removal from municipal watewater by tropical horizontal subsurface constructed wetlands. Sci. Total Environ. 542, 93–101 (2016).pl_PL
dc.referencesMeng, P., Pei, H., Hu, W., Shao, Y. & Li, Z. How to increase microbial degradation in constructed wetlands: influencing factors and improvement measures. Bioresource Technol. 157, 316–326 (2014).pl_PL
dc.referencesReddy, K. R. & D’Angelo, E. M. Biochemical indicators to evaluate pollutant removal efficiwncy in constructed wetlands. Water Sci. Technol. 35(5), 1–10 (1997).pl_PL
dc.referencesUrbaniak, M., Kiedrzyńska, E., Kiedrzyński, M., Zieliński, M. & Grochowalski, A. The Role of Hydrology in the Polychlorinated Dibenzo-p-dioxin and Dibenzofuran Distributions in a Lowland River. J. Environ. Qual 44(4), 1171–1182 (2015).pl_PL
dc.referencesForbes, E. G. A., Foy, R. H., Mullholland, M. & Woods, V. B. The Performance of a Five Pond Constructed Wetland for the Bioremediation of Farm Effluent. Global Research Unit, AFBI Hillsborough (2009).pl_PL
dc.referencesFlowers, J. J., He, S., Yilmaz, S., Noguera, D. R. & McMahon, K. D. Denitrification capabilities of two biological phosphorus removal sludges dominated by different ‘Candidatus Accumulibacter’ clades. Environmental Microbiology Reports 1(6), 583–588 (2009).pl_PL
dc.referencesGreenberg, A. E., Clesceri, L. S. & Eaton, A. D. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington (1998).pl_PL
dc.referencesHACH. Water analysis handbook. Hach Company, pp. 1309 (1997).pl_PL
dc.referencesWyrwicka, A., Steffani, S. & Urbaniak, M. The effect of PCB-contaminated sewage sludge and sediment on metabolism of cucumber plants (Cucumis sativus L.). Ecohydrol. Hydrobiol. 14(1), 75–82 (2014).pl_PL
dc.identifier.doihttps://doi.org/10.1038/s41598-017-05555-y
dc.disciplinenauki biologicznepl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 4.0 Międzynarodowe