Show simple item record

dc.contributor.authorBauer, Jarosław
dc.contributor.authorWalczak, Zbigniew
dc.description.abstractWe apply the modified Brodutch and Modi method of constructing geometric measures of correlations to obtain analytical expressions for measurement-induced geometric classical and quantum correlations based on the trace distance for two-qubit X states. Moreover, we study continuity of the classical and quantum correlations for these states. In particular, we show that these correlations may not be continuous.pl_PL
dc.publisherSpringer Naturepl_PL
dc.relation.ispartofseriesQuantum Information Processing;19
dc.rightsUznanie autorstwa 4.0 Międzynarodowe*
dc.subjectGeometric measures of correlations ·pl_PL
dc.subjectClassical and quantum correlationspl_PL
dc.subjectTrace distancepl_PL
dc.subjectContinuity of measures of correlations ·pl_PL
dc.subjectX statespl_PL
dc.titleMeasurement-induced geometric measures of correlations based on the trace distance for two-qubit X statespl_PL
dc.contributor.authorAffiliationDepartment of Theoretical Physics, Faculty of Physics and Applied Informatics, University of Lodz, Pomorska 149/153, 90-236 Lodz, Polandpl_PL
dc.referencesHorodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)pl_PL
dc.referencesModi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)pl_PL
dc.referencesRoga, W., Spehner, D., Illuminati, F.: Geometric measures of quantum correlations: characterization, quantification, and comparison by distances and operations. J. Phys. A 49, 235301 (2016)pl_PL
dc.referencesAdesso, G., Bromley, T.R., Cianciaruso, M.: Measures and applications of quantum correlations. J. Phys. A 49, 473001 (2016)pl_PL
dc.referencesBera, A., Das, T., Sadhukhan, D., Roy, S.S., Sen(De), A., Sen, U.: Quantum discord and its allies: a review of recent progress. Rep. Prog. Phys. 81, 024001 (2018)pl_PL
dc.referencesWerner, R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)pl_PL
dc.referencesKnill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)pl_PL
dc.referencesBraunstein, S.L., Caves, C.M., Jozsa, R., Linden, N., Popescu, S., Schack, R.: Separability of very noisy mixed states and implications for NMR quantum computing. Phys. Rev. Lett. 83, 1054 (1999)pl_PL
dc.referencesBennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070 (1999)pl_PL
dc.referencesLloyd, S.: Quantum search without entanglement. Phys. Rev. A 61, 010301 (1999)pl_PL
dc.referencesMeyer, D.A.: Sophisticated quantum search without entanglement. Phys. Rev. Lett. 85, 2014 (2000)pl_PL
dc.referencesBiham, E., Brassard, G., Kenigsberg, D., Mor, T.: Quantum computing without entanglement. Theor. Comput. Sci. 320, 15 (2004)pl_PL
dc.referencesDatta, A., Flammia, S.T., Caves, C.M.: Entanglement and the power of one qubit. Phys. Rev. A 72, 042316 (2005)pl_PL
dc.referencesDatta, A., Vidal, G.: Role of entanglement and correlations in mixed-state quantum computation. Phys. Rev. A 75, 042310 (2007)pl_PL
dc.referencesOllivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)pl_PL
dc.referencesHenderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)pl_PL
dc.referencesDatta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)pl_PL
dc.referencesHu, M.L., Hu, X., Wang, J., Peng, Y., Zhang, Y.R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762–764, 1 (2018)pl_PL
dc.referencesQiang, W.C., Sun, G.H., Dong, Q., Dong, S.H.: Genuine multipartite concurrence for entanglement of Dirac fields in noninertial frames. Phys. Rev. A 98, 022320 (2018)pl_PL
dc.referencesQiang, W.C., Dong, Q., Mercado Sanchez, M.A., Sun, G.H., Dong, S.H.: Entanglement property of the Werner state in accelerated frames. Quantum Inf. Process. 18, 314 (2019)pl_PL
dc.referencesTorres-Arenas, A.J., Dong, Q., Sun, G.H., Qiang, W.C., Dong, S.H.: Entanglement measures of W-state in noninertial frames. Phys. Lett. B 789, 93 (2019)pl_PL
dc.referencesLiao, X.P., Wen, W., Rong, M.S., Fang, M.F.: Effect of partial-collapse measurement on quantum entanglement in noninertial frames. Quantum Inf. Process. 19, 106 (2020)pl_PL
dc.referencesModi, K., Paterek, T., Son, W., Vedral, V., Williamson, M.: Unified view of quantum and classical correlations. Phys. Rev. Lett. 104, 080501 (2010)pl_PL
dc.referencesDakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)pl_PL
dc.referencesPiani, M.: Problem with geometric discord. Phys. Rev. A 86, 034101 (2012)pl_PL
dc.referencesPaula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)pl_PL
dc.referencesDebarba, T., Maciel, T.O., Vianna, R.O.: Witnessed entanglement and the geometric measure of quantum discord. Phys. Rev. A 86, 024302 (2012)pl_PL
dc.referencesBrodutch, A., Modi, K.: Criteria for measures of quantum correlations. Quantum Inf. Comput. 12, 0721 (2012)pl_PL
dc.referencesWalczak, Z., Wintrowicz, I.: On the Brodutch and Modi method of constructing geometric measures of classical and quantum correlations. Quantum Inf. Process. 16, 83 (2017)pl_PL
dc.referencesWilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013)pl_PL
dc.referencesYu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed “X” states. Quantum Inf. Comput. 7, 459 (2007)pl_PL
dc.referencesChen, Q., Zhang, C., Yu, S., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit X states. Phys. Rev. A 84, 042313 (2011)pl_PL
dc.referencesHuang, Y.: Quantum discord for two-qubit X states: analytical formula with very small worst-case error. Phys. Rev. A 88, 014302 (2013)pl_PL
dc.referencesHorodecki, R., Horodecki, M.: Information-theoretic aspects of inseparability of mixed states. Phys. Rev. A 54, 1838 (1996)pl_PL
dc.referencesBatle, J., Casas, M.: Nonlocality and entanglement in qubit systems. J. Phys. A 44, 445304 (2011)pl_PL
dc.referencesIshizaka, S., Hiroshima, T.: Maximally entangled mixed states under nonlocal unitary operations in two qubits. Phys. Rev. A 62, 022310 (2000)pl_PL
dc.referencesCiccarello, F., Tufarelli, T., Giovannetti, V.: Toward computability of trace distance discord. New J. Phys. 16, 013038 (2014)pl_PL
dc.referencesNakano, T., Piani, M., Adesso, G.: Negativity of quantumness and its interpretations. Phys. Rev. A 88, 012117 (2013)pl_PL
dc.referencesŁugiewicz, P., Frydryszak, A., Jakóbczyk, L.: Measurement-induced qudit geometric discord. J. Phys. A 50, 245301 (2017)pl_PL
dc.referencesWalczak, Z.: Measurement-induced geometric measures of correlations based on the Hellinger distance and their local decoherence. Quantum Inf. Process. 18, 321 (2019)pl_PL
dc.disciplinenauki fizycznepl_PL

Files in this item


This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa 4.0 Międzynarodowe