Pokaż uproszczony rekord

dc.contributor.authorMordwa, Stanisław
dc.contributor.authorOstrowska, Małgorzata
dc.date.accessioned2021-08-23T14:03:59Z
dc.date.available2021-08-23T14:03:59Z
dc.date.issued2020-12-30
dc.identifier.issn1231-1952
dc.identifier.urihttp://hdl.handle.net/11089/38772
dc.description.abstractThe paper continues from previous joint studies and their practical application at the confluence of human geography, safety-related research and Geographic Information Systems (GIS). The objective of the study was to identify the land cover types most at risk from fire. The study has contributed an original angle by taking into account various land cover types with a potential influence on the distribution of fires geocoded at the address level. The analysis considered 27,651 fire interventions, as recorded by the Polish State Fire Service between 2014 and 2016 in the country’s central region known as Łódzkie Voivodeship. The main methods employed include various GIS tools, including Voronoi tessellation (to identify the areas most at risk of fire) and the fire location quotient (FLQ, a measure of the colocation between the number of fires and land cover). The most important conclusion is that of all the land cover types considered in the study, the built-up area type, especially the multi-family residential and retail and service area subtypes, was virtually the only one with a strong influence on the location of fires. The fire high-risk areas (FH-RA) identified here were primarily limited to urban areas.en
dc.description.abstractThe paper continues from previous joint studies and their practical application at the confluence of human geography, safety-related research and Geographic Information Systems (GIS). The objective of the study was to identify the land cover types most at risk from fire. The study contributes an original angle by taking into account various land cover types with a potential influence on the distribution of fires geocoded at the address level. The analysis takes into account 27,651 fire interventions, as recorded by the Polish State Fire Service between 2014 and 2016 in the country’s central region known as Łódzkie Voivodeship. The main methods employed include various GIS tools, including Voronoi tessellation (to identify the areas most at risk of fire) and the fire location quotient (FLQ, a measure of colocation between the number of fires and land cover). The most important conclusion is that of all the land cover types considered in the study, the built-up area type, especially the multi-family residential and retail and service area subtypes, was virtually the only one with a strong influence on the location of fires. The fire high-risk areas (FH-RA) identified here were primarily limited to urban areas.pl
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesEuropean Spatial Research and Policy;2en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectfire incidenten
dc.subjectGISen
dc.subjectland coveren
dc.subjectfire high-risk areaen
dc.subjectfire location quotienten
dc.subjectŁódzkie Voivodeshipen
dc.titleThe Influence of Land Cover on the Spatial Distribution of Fire Sites: A Case Study of Łódzkie Voivodeship, Polanden
dc.title.alternativeThe Influence of Land Cover on the Spatial Distribution of Fire Sites: A Case Study of Łódzkie Voivodeship, Polandpl
dc.typeArticle
dc.page.number171-197
dc.contributor.authorAffiliationMordwa, Stanisław - University of Lodz, Faculty of Geographical Sciences, Institute of the Built Environment and Spatial Policy, Kopcińskiego 31, 90-142, Łódź, Polanden
dc.identifier.eissn1896-1525
dc.referencesAKAY, A.E. and ERDOĞAN, A. (2017), ‘Gis-Based Multi-Criteria Decision Analysis For Forest Fire Risk Mapping’, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, IV-4/W4, pp. 25–30. https://doi.org/10.5194/isprs-annals-IV-4-W4-25-2017en
dc.referencesAKAY, A.E. and ŞAHIN, H.T. (2019), ‘Forest Fire Risk Mapping by using GIS Techniques and AHP Method: A Case Study in Bodrum (Turkey)’, European Journal of Forest Engineering, 5 (1), pp. 25–35. https://doi.org/10.33904/ejfe.579075en
dc.referencesASGARY, A., GHAFFARIA, A. and LEVY, J. (2010), ‘Spatial and temporal analyses of structural fire incidents and their causes: A case of Toronto, Canada’, Fire Safety Journal, 45 (1), pp. 44–57. https://doi.org/10.1016/j.firesaf.2009.10.002en
dc.referencesBAJOCCO, S., PEZZATTI, G.B., MAZZOLENI, S. and RICOTTA, C. (2010), ‘Wildfire seasonality and land use: when do wildfires prefer to burn?’, Environmental Monitoring and Assessment, 164 (1–4), pp. 445–452. https://doi.org/10.1007/s10661-009-0905-xen
dc.referencesCORCORAN, J., HIGGS, G., BRUNSDON, C., WARE, A. and NORMAN, P. (2007), ‘The use of spatial analytical techniques to explore patterns of fire incidence: A South Wales case study’, Computers, Environment and Urban Systems, 31 (6), pp. 623–647. https://doi.org/10.1016/j.compenvurbsys.2007.01.002en
dc.referencesDLAMINI, W.M. (2011), ‘Application of Bayesian networks for fire risk mapping using GIS and remote sensing data’, GeoJournal, 76 (3), pp. 283–296. https://doi.org/10.1007/s10708-010-9362-xen
dc.referencesERDEN, T. and COŞKUN, M.Z. (2010), ‘Multi-criteria site selection for fire services: the interaction with analytic hierarchy process and geographic information systems’, Natural Hazards and Earth System Sciences, 10, pp. 2127–2134. https://doi.org/10.5194/nhess-10-2127-2010en
dc.referencesEUGENIO, F.C., dos SANTOS, A.R., FIEDLER, N.C., RIBEIRO, G.A., da SILVA, A.G., dos SANTOS, A.B., PANETO, G.G. and SCHETTINO, V.R. (2016), ‘Applying GIS to develop a model for forest fire risk: A case study in Espirito Santo, Brasil’, Journal of Environmental Management, 173, pp. 65–71. https://doi.org/10.1016/j.jenvman.2016.02.021en
dc.referencesFEURDEAN, A., VANNIÈRE, B., FINSINGER, W., WARREN, D., CONNOR, S.C., FORREST, M., LIAKKA, J., PANAIT, A., WERNER, C., ANDRIČ, M., BOBEK, P., CARTER, V.A., DAVIS, B., DIACONU, A.-C., DIETZE, E., FEESER, I., FLORESCU, G., GAŁKA, M., GIESECKE, T., JAHNS, S., JAMRICHOVÁ, E., KAJUKAŁO, K., KAPLAN, J., KARPIŃSKA-KOŁACZEK, M., KOŁACZEK, P., KUNEŠ, P., KUPRIYANOV, D., LAMENTOWICZ, M., LEMMEN, C., MAGYARI, E.K., MARCISZ, K., MARINOVA, E., NIAMIR, A., NOVENKO, E., OBREMSKA, M., PĘDZISZEWSKA, A., PFEIFFER, M., POSKA, A., RÖSCH, M., SŁOWIŃSKI, M., STANČIKAITĖ, M., SZAL, M., ŚWIĘTA-MUSZNICKA, J., TANŢĂU, I., THEUERKAUF, M., TONKOV, S., VALKÓ, O., VASSILJEV, J., VESKI, S., VINCZE, I., WACNIK, A., WIETHOLD, J. and HICKLER, T. (2020), ‘Fire hazard modulation by long-term dynamics in land cover and dominant forest type in Eastern and Central Europe’, Biogeosciences, 17, pp. 1213–1230. https://doi.org/10.5194/bg-17-1213-2020en
dc.referencesFire management: voluntary guidelines. Principles and strategic actions (2006), Rome: FAO. http://www.fao.org/3/j9255e/j9255e00.pdf [accessed on: 03.09.2020].en
dc.referencesGUO, F., SU, Z., TIGABU, M., YANG, X., LIN, F., LIANG, H. and WANG, G. (2017), ‘Spatial Modelling of Fire Drivers in Urban-Forest Ecosystems in China’, Forests, 8, p. 180.en
dc.referencesHAAS, J.R., CALKIN, D.E. and THOMPSON, M.P. (2013), ‘A national approach for integrating wildfire simulation modeling into Wildland Urban Interface risk assessments within the United States’, Landscape and Urban Planning, 119, pp. 44–53. https://doi.org/10.1016/j.landurbplan.2013.06.011en
dc.referencesHABIBI, K., LOTFI, S. and KOOHSARI, M.J. (2008), ‘Spatial Analysis of Urban Fire Station Location by Integrating AHP Model and IO Logic Using GIS (A Case Study of Zone 6 of Tehran)’, Journal of Applied Sciences, 8 (19), pp. 3302–3315. https://doi.org/10.3923/jas.2008.3302.3315en
dc.referencesHART, T. and ZANDBERGEN, P. (2014), ‘Kernel density estimation and hotspot mapping: Examining the influence of interpolation method, grid cell size, and bandwidth on crime forecasting’, Policing: An International Journal of Police Strategies & Management, 37 (2), pp. 305–323. https://doi.org/10.1108/PIJPSM-04-2013-0039en
dc.referencesHASTIE, C. and SEARLE, R. (2016), ‘Socio-economic and demographic predictors of accidental dwelling fire rates’, Fire Safety Journal, 84, pp. 50–56. https://doi.org/10.1016/j.firesaf.2016.07.002en
dc.referencesHOLBORN, P.G., NOLAN, P.F. and GOLT, J. (2003), ‘An analysis of fatal unintentional dwelling fires investigated by London Fire Brigade between 1996 and 2000’, Fire Safety Journal, 38 (1), pp. 1–42. https://doi.org/10.1016/S0379-7112(02)00049-8en
dc.referencesHUANG, B., LIU, N. and CHANDRAMOULI, M. (2006), ‘A GIS supported Ant algorithm for the linear feature covering problem with distance constraints’, Decision Support Systems, 42 (2), pp. 1063–1075. https://doi.org/10.1016/j.dss.2005.09.002en
dc.referencesInformation Bulletin Of The State Fire Service For The Year 2016 (2017). http://www.straz.gov.pl/download/4022 [accessed on: 15.03.2020].en
dc.referencesInstrukcja ochrony przeciwpożarowej lasu, (2020), Warszawa: Centrum Informacyjne Lasów Państwowych. http://www.lasy.gov.pl/pl/publikacje/copy_of_gospodarka-lesna/ochrona_lasu/instrukcja_p-poz.pdf [accessed on: 11.02.2020].en
dc.referencesISARD, W., BRAMHALL, D.F., CARROTHERS, G.A.P., CUMBERLAND, J.H., MOSES, L.N., PRICE, D.O. and SCHOOLER, E.W. (eds.) (1962), Methods of Regional Analysis: An Introduction to Regional Science, Cambridge: M.I.T. Press.en
dc.referencesJAJTIĆ, K., GALIJAN, V., ŽAFRAN, I. and CVITANOVIĆ, M. (2019), ‘Analysing Wildfire Occurrence Through A Mixed-Method Approach: A Case Study From The Croatian Mediterranean’, Erdkunde, 73 (4), pp. 323–341. https://doi.org/10.3112/erdkunde.2019.04.05en
dc.referencesJENNINGS, C.R. (2013), ‘Social and economic characteristics as determinants of residential fire risk in urban neighborhoods: A review of the literature’, Fire Safety Journal, 62, pp. 13–19. https://doi.org/10.1016/j.firesaf.2013.07.002en
dc.referencesKOSTRUBIEC, B. (1972), ‘Analiza zjawisk koncentracji w sieci osadniczej. Problemy metodyczne’, Prace Geograficzne, 93.en
dc.referencesKOZIOŁ, J. (2019), ‘Mapowanie rozkładu pożarów i miejscowych zagrożeń na przykładzie województwa mazowieckiego’, Safety & Fire Technology, 54 (2), pp. 22–31. https://doi.org/10.12845/sft.54.2.2019.2en
dc.referencesLEE, I. and LEE, K. (2009), ‘A generic triangle-based data structure of the complete set of higher order Voronoi diagrams for emergency management’, Computers, Environment and Urban Systems, 33, pp. 90–99. https://doi.org/10.1016/j.compenvurbsys.2009.01.002en
dc.referencesLI, Y., ZHAO, J., GUO, X., ZHANG, Z., TAN, G. and YANG, J. (2017), ‘The Influence of Land Use on the Grassland Fire Occurrence in the Northeastern Inner Mongolia Autonomous Region, China’, Sensors, 17 (3), p. 437. https://doi.org/10.3390/s17030437en
dc.referencesMAZUR, R. (2014), ‘Ocena stopnia bezpieczeństwa w aspekcie statystyk zdarzeń za lata 2000–2012. Czasowo-przestrzenna charakterystyka zagrożeń pożarowych obiektów mieszkalnych w systemie informacji przestrzennej (GIS) na przykładzie m.st. Warszawa’, BiTP. Bezpieczeństwo i Technika Pożarnicza, 34 (2), pp. 47–56.en
dc.referencesMAZUR, R. and GUZEWSKI, P. (2014), ‘Ocena stopnia bezpieczeństwa w aspekcie statystyk zdarzeń za lata 2000-2012. Analiza statystyczna przypuszczalnych przyczyn pożarów obiektów mieszkalnych w skali kraju i miasta’, Bezpieczeństwo i Technika Pożarnicza, 35 (3), pp. 47–59.en
dc.referencesMAZUR, R. and KWASIBORSKI, A. (2013), ‘Ocena stopnia bezpieczeństwa w aspekcie statystyk zdarzeń za lata 2007–2012. Pożary’, Bezpieczeństwo i Technika Pożarnicza, 30 (2), pp. 17–22.en
dc.referencesMAZUR, R., PAJĄK, M., KŁOSIŃSKI, M. and KLECHA, P. (2015), ‘Koncepcja budowy i zastosowania infrastruktury danych przestrzennych w aspekcie planowania operacyjnego Państwowej Straży Pożarnej. Studium przypadku na podstawie województwa świętokrzyskiego’, [in:] WRÓBLEWSKI, D. (ed.). Zarządzanie kryzysowe Wybrane wyniki badań naukowych i prac rozwojowych, Józefów: Centrum Naukowo-Badawcze Ochrony Przeciwpożarowej, Państwowy Instytut Badawczy, pp. 128–147.en
dc.referencesMOFFAT, A.J. and PEARCE, H.G. (2013), Harmonising approaches to evaluation of forest fire risk, A report by Forest Resarch & Scion, supported by Tranzfor, Farnham.en
dc.referencesNIMLYAT, P.S., AUDU, A.U., OLA-ADISA, E.O. and GWATAU, D. (2017), ‘An evaluation of fire safety measures in high-rise buildings in Nigeria’, Sustainable Cities and Society, 35, pp. 774– 785. https://doi.org/10.1016/j.scs.2017.08.035en
dc.referencesPAYSEN, T.E., ANSLEY, R.J., BROWN, J.K., GOTTFRIED, G.J., HAASE, S.M., HARRINGTON, M.G., NAROG, M.G., SACKETT, S.S. and WILSON, R.C. (2000), ‘Fire in western shrubland, woodland, and grassland ecosystems’, [in:] BROWN, J.K. and SMITH, J.K. (eds.), Wildland fire in ecosystems: effects of fire on flora, Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, pp. 121–159.en
dc.referencesPodręcznik Użytkownika Systemu SWD-ST 2.5 (2014). https://www.swdst.pl/wp-content/uploads/pliki/instrukcja_swd_st_2.5.pdf [accessed on: 15.03.2020].en
dc.referencesQIAO, Y., HUANG, K., JEUB, J., QIAN, J. and SONG, Y., (2018), ‘Deploying electric vehicle charging stations considering time cost and existing infrastructure’, Energies, 11, p. 2436. https://doi.org/10.3390/en11092436en
dc.referencesRozporządzenie Ministra Spraw Wewnętrznych i Administracji z dnia 18 lutego 2011 r. w sprawie szczegółowych zasad organizacji krajowego systemu ratowniczo-gaśniczego (Dz.U. 2011 nr 46, poz. 239).en
dc.referencesRUNGE, J. (2006), Metody badań w geografii społeczno-ekonomicznej – elementy metodologii, wybrane narzędzia badawcze, Katowice: Wydawnictwo Uniwersytetu Śląskiego.en
dc.referencesSCHAEFER, A.J. and MAGI, B.I. (2019), ‘Land-Cover Dependent Relationships between Fire and Soil Moisture’, Fire, 2, p. 55. https://doi.org/10.3390/fire2040055en
dc.referencesSCOTT, J.H., THOMPSON, M.P. and CALKIN, D.E. (2013), A wildfire risk assessment framework for land and resource management, Fort Collins: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. https://doi.org/10.2737/RMRS-GTR-315en
dc.referencesSHAI, D. (2006), ‘Income, Housing, and Fire Injuries: A Census Tract Analysis’, Public Health Reports, 121 (2), pp. 149–154. https://doi.org/10.1177/003335490612100208en
dc.referencesSUCHECKI, B. (2010), Ekonometria przestrzenna. Metody i modele analizy danych przestrzennych, Warsaw: Wydawnictwo C.H. Beck.en
dc.referencesSYPION-DUTKOWSKA, N. and LEITNER, M. (2017), ‘Land Use Influencing the Spatial Distribution of Urban Crime: A Case Study of Szczecin, Poland’, ISPRS International Journal of Geo-Information, 6 (3), pp. 74. https://doi.org/10.3390/ijgi6030074en
dc.referencesUstawa z dnia 24 sierpnia 1991 r. o ochronie przeciwpożarowej (Dz.U. 1991 nr 81, poz. 351).en
dc.referencesVASILIAUSKAS, D. and BECONYTĖ, G. (2015), ‘Spatial analysis of fires in Vilnius city in 2010–2012’, Geodesy and Cartography, 41 (1), pp. 25–30. https://doi.org/10.3846/20296991.2015.1011862en
dc.referencesWANG, J. and KWAN, M. (2018), ‘Hexagon-based adaptive crystal growth Voronoi diagrams based on weighted planes for service area delimitation’, ISPRS International Journal of Geo-Information, 7 (7), p. 257. https://doi.org/10.3390/ijgi7070257en
dc.referencesWOŹNIAK, E. (2014), ‘Określanie metodami geoinformatycznymi stopnia zagrożenia pożarowego lasów w Polsce’, Teledetekcja Środowiska, 51, pp. 5–55.en
dc.referencesXIA, Z., LI, H., CHEN, Y. and YU, W. (2019), ‘Detecting urban fire high-risk regions using colocation pattern measures’, Sustainable Cities and Society, 49, p. 101607. https://doi.org/10.1016/j.scs.2019.101607en
dc.referencesYANG, L., JONES, B.F. and YANG, S. (2007), ‘A fuzzy multi-objective programming for optimization of fire station locations through genetic algorithms’, European Journal of Operational Research, 181 (2), pp. 903–915. https://doi.org/10.1016/j.ejor.2006.07.003en
dc.referencesZHANG, W. and JIANG, J.C. (2011), ‘Research on the location of fire station based on GIS and GA’, Applied Mechanics and Materials, 130–134, pp. 377–380. https://doi.org/10.4028/www.scientific.net/AMM.130-134.377en
dc.referencesZHU, H.H., YAN, H.W. and LI, Y. (2008), ‘An optimization method for the layout of public service facilities based on Voronoi diagrams’, Science of Surveying and Mapping, 33, pp. 72–74.en
dc.contributor.authorEmailMordwa, Stanisław - stanislaw.mordwa@geo.uni.lodz.pl
dc.contributor.authorEmailOstrowska, Małgorzata - ostrowskamga@gmail.com
dc.identifier.doi10.18778/1231-1952.27.2.11
dc.relation.volume27


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0