dc.contributor.author | Olejnik, Alicja | |
dc.contributor.author | Olejnik, Jakub | |
dc.date.accessioned | 2021-06-10T07:29:51Z | |
dc.date.available | 2021-06-10T07:29:51Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Olejnik A,, Olejnik J., Metody stochastyczne w ekonometrii przestrzennej – nowoczesna analiza asymptotyczna, WUŁ, Łódź 2020, https://doi.org/10.18778/8220-438-4 | pl_PL |
dc.identifier.isbn | 978-83-8220-438-4 | |
dc.identifier.uri | http://hdl.handle.net/11089/36137 | |
dc.description.abstract | W monografii zostały zaprezentowane najnowsze i w dużej mierze autorskie osiągnięcia z zakresu teorii asymptotycznych stochastycznych modeli ekonometrii przestrzennej. Rezultaty pracy naukowej autorów zostały poprzedzone przeglądem klasycznych, choć przedstawionych w nowoczesnym ujęciu, zagadnień ekonometrii przestrzennej. Ważnym elementem omawianej teorii jest nowe Centralne Twierdzenie Graniczne dla form liniowo-kwadratowych .Pozwala ono na przeprowadzanie formalnych dowodów własności granicznych statystyk testowych autokorelacji przestrzennej oraz estymatorów parametrów modeli ekonometrycznych z zależnościami przestrzennymi. | pl_PL |
dc.language.iso | pl | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.subject | ekonometria przestrzenna | pl_PL |
dc.subject | metody stochastyczne | pl_PL |
dc.subject | modelowanie przestrzenne | pl_PL |
dc.subject | autoregresja przestrzenna | pl_PL |
dc.subject | testy statystyczne | pl_PL |
dc.subject | centralne twierdzenie graniczne | pl_PL |
dc.title | Metody stochastyczne w ekonometrii przestrzennej – nowoczesna analiza asymptotyczna | pl_PL |
dc.type | Book | pl_PL |
dc.page.number | 168 | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Łódzki, Wydział Ekonomiczno-Socjologiczny, Instytut Gospodarki Przestrzennej, Katedra Ekonometrii Przestrzennej | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Łódzki, Wydział Matematyki i Informatyki, Katedra Informatyki Stosowanej | pl_PL |
dc.identifier.eisbn | 978-83-8220-437-7 | |
dc.references | Anselin L. (1988a), Spatial Econometrics: Methods and Models, Kluwer Academic Publications, Dordrecht. | pl_PL |
dc.references | Anselin L. (1988b), Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity, „Geographical Analysis” 20: 1–17. | pl_PL |
dc.references | Anselin L. (1996), The Moran Scatterplot as an ESDA Tool to Assess Local Instability in Spatial Association, [w:] M. Fischer, H. Scholten, D. Unwin (eds.), Spatial Analytical Perspectives on GIS in Environmental and Socio-Economic Sciences, Taylor and Francis, London, s. 111–125. | pl_PL |
dc.references | Anselin L. (2001), Rao’s score test in spatial econometrics, „Journal of Statistical Planning and Inference” 97: 113–139. | pl_PL |
dc.references | Anselin L. (2002), Under the hood: issues in the specification and interpretation of spatial regression models, „Agricultural Economics” 27: 247–267. | pl_PL |
dc.references | Anselin L., Bera A. K. (1998), Spatial Dependence in Linear Regression Models with an Introduction to Spatial Econometrics, [w:] A. Ullah, D. E. A. Giles (eds.), Handbook of Applied Economic Statistics, Marcel Dekker, Inc., New York, s. 237–289. | pl_PL |
dc.references | Anselin L., Rey S. J. (2014), Modern Spatial Econometrics in Practice: A Guide to GeoDa, GeoDaSpace and PySAL, GeoDa Press LLC, Chicago. | pl_PL |
dc.references | Arbia G. (1989), Spatial Data Configuration in Statistical Analysis of Regional Economic and Related Problems, Kluwer Academic Publishers, Boston. | pl_PL |
dc.references | Arbia G. (2006), Spatial Econometrics: Statistical Foundations and Applications to Regional Convergence, Advances in Spatial Science, Springer, Berlin. | pl_PL |
dc.references | Arbia G., Baltagi B. H. (eds.) (2009), Spatial Econometrics. Methods and Applications, Springer, Berlin. | pl_PL |
dc.references | Badinger H., Egger P. (2013), Estimation and testing of higher-order spatial autoregressive panel data error component models, „Journal of Geographical Systems” 15 (4): 453–489. | pl_PL |
dc.references | Baltagi B. H., Lesage J. P., Pace R. K. (2016), Spatial Econometrics: Qualitative and Limited Dependent Variables, „Advances in Econometrics” 37, Emerald. | pl_PL |
dc.references | Beran J. (1972), Rank spectral processes and tests for serial dependence, „Annals of Mathematical Statistics” 43: 1749–1766. | pl_PL |
dc.references | Besner C. (2002), A Spatial Autoregressive Specification with a Comparable Sales Weighting Scheme, „Journal of Real Estate Research” 24: 193–212. | pl_PL |
dc.references | Bhansali R. J., Giraitis L., Kokoszka P. S. (2007), Convergence of quadratic forms with non-vanishing diagonal, „Statistics and Probability Letters” 77: 726–734. | pl_PL |
dc.references | Billingsley P. (2009), Prawdopodobieństwo i miara, przeł. K. Kizeweter, J. E. Roguski, wyd. 2, Wydawnictwo Naukowe PWN, Warszawa. | pl_PL |
dc.references | Bivand R., Hauke J., Kossowski T. (2013), Computing the Jacobian in Gaussian Spatial Autoregressive Models: An Illustrated Comparison of Available Methods, „Geographical Analysis” 45 (2): 150–179. | pl_PL |
dc.references | Bodson P., Peeters D. (1975), Estimations of the coefficients in a linear regression in the presence of spatial autocorrelation: an application to a Belgian labour–demand function. „Environment and Planning” 7 (4): 455–472. | pl_PL |
dc.references | Born B., Breitung J. (2011), Simple regression‐based tests for spatial dependence, „The Econometrics Journal” 14 (2): 330–342. | pl_PL |
dc.references | Cliff A. D., Ord J. K. (1972), Testing for spatial autocorrelation among regression residuals, „Geographical Analysis” 4: 267–284. | pl_PL |
dc.references | Cliff A. D., Ord J. K. (1973), Spatial Autocorrelation, Pion, London. | pl_PL |
dc.references | Cliff A. D., Ord J. K. (1981), Spatial Processes: Models and Applications, Pion, London. | pl_PL |
dc.references | Corrado L., Fingleton B. (2011), Where is the economics in spatial econometrics?, „Journal of Regional Science” 52 (2): 210–239. | pl_PL |
dc.references | Cramér H., Wold H. (1936), Some Theorems on Distribution Functions, „Journal of the London Mathematical Society” 11 (4): 290–294. | pl_PL |
dc.references | Dacey M. F. (1968), A review on measures of contiguity for two and k–color maps. Technical Report No. 2, „Spatial Diffusion Study”, Department of Geography, Evanston, Northwestern University. | pl_PL |
dc.references | de Jong P. (1987), A central limit theorem for generalized quadratic forms, „Probability Theory and Related Fields” 75: 261–277. | pl_PL |
dc.references | de Jong P., Sprenger C., van Veen F. (1984), On Extreme Values of Moran’s I and Geary’s c, „Geographical Analysis” 16 (1): 17–24. | pl_PL |
dc.references | Deng M. (2008), An anisotropic model for spatial processes, Geographical Analysis 40 (1): 26–51. | pl_PL |
dc.references | Durbin J., Watson G. S. (1950), Testing for serial correlation in least-squares regression I, „Biometrika” 37: 159–178. | pl_PL |
dc.references | Durbin J., Watson G. S. (1951), Testing for serial correlation in least-squares regression II, „Biometrika” 38: 409–428. | pl_PL |
dc.references | Elhorst J. P. (2001), Dynamic models in space and time, „Geographical Analysis” 33 (2): 119–140. | pl_PL |
dc.references | Elhorst J. P., Halleck S. (2013), On spatial econometric models, spillover effects, and W, 53rd Congress of the European Regional Science Association: „Regional Integration: Europe, the Mediterranean and the World Economy”, 27–31 August 2013, Palermo, Italy, http://hdl.handle.net/10419/123888 (dostęp 27.11.2020). | pl_PL |
dc.references | Elhorst J. P., Lacombe D. J., Piras G. (2012), On model specification and parameter space definitions in higher order spatial econometric models, „Regional Science and Urban Economics” 42 (1–2): 211–220. | pl_PL |
dc.references | Feng C., Wang H., Han Y., Xia Y., Tu, X. M. (2014), The Mean Value Theorem and Taylor’s Expansion in Statistics. „The American Statistician” 67: 245–248. | pl_PL |
dc.references | Fingleton B. (1999), Spurious spatial regression: some Monte Carlo results with spatial unit Root and Spatial Co-integration, „Journal of Regional Science” 39: 1–19. | pl_PL |
dc.references | Fisher W. (1971), Econometric estimation with spatial dependence, „Regional and Urban Economics” 1: 19–40. | pl_PL |
dc.references | Florax R. J. G. M., Anselin L. (1995), New Directions in Spatial Econometrics, Springer, Berlin. | pl_PL |
dc.references | Florax R. J. G. M., Anselin L. (2004), Advances in Spatial Econometrics: Methodology, Tools and Applications, Springer, Berlin. | pl_PL |
dc.references | Fujita M., Krugman P., Mori T. (1999a), On the evolution of hierarchical urban systems, „European Economic Review” 43 (2): 209–251. | pl_PL |
dc.references | Fujita M., Krugman P., Venables A. J. (1999b), The spatial economy: Cities, regions and international trade. MIT Press, Cambridge MA. | pl_PL |
dc.references | Getis A., Aldstadt J. (2004), Constructing the Spatial Weights Matrix Using A Local Statistic, „Geographical Analysis” 36: 90–114. | pl_PL |
dc.references | Getis A., Ord J. K. (1992), The analysis of spatial association by distance statistics, „Geographical Analysis” 24: 189–206. | pl_PL |
dc.references | Giraitis L., Taqqu M. (1998), Central limit theorems for quadratic forms with time-domain conditions, „Annals of Probability” 26: 377–398. | pl_PL |
dc.references | Griffith D. A. (2003), Spatial Autocorrelation and Spatial Filtering. Gaining Understanding Through Theory and Scientific Visualization, Springer. | pl_PL |
dc.references | Gupta A., Robinson P. (2015), Inference on higher-order spatial autoregressive models with increasingly many parameters, „Journal of Econometrics” 186: 19–31. | pl_PL |
dc.references | Gupta A., Robinson P. (2018), Pseudo maximum likelihood estimation of spatial autoregressive models with increasing dimension, „Journal of Econometrics” 202: 92–107. | pl_PL |
dc.references | Hájek P., Johanis M. (2014), Smooth analysis in Banach spaces, De Gruyter Series in Nonlinear Analysis and Applications 19, De Gruyter, Berlin. | pl_PL |
dc.references | Hall P., Hyde C. C. (1980), Martingale limit theory and its application, Academic Press, Inc., New York. | pl_PL |
dc.references | Han X., Hsieh C., Lee L. F. (2017), Estimation and model selection of higher-order spatial autoregressive model: An efficient Bayesian approach, „Regional Science and Urban Economics” 63: 97–120. | pl_PL |
dc.references | Hordijk L. (1974), Spatial correlation in the disturbances of a linear interregional model, „Regional Science and Urban Economics” 4 (3): 117–140. | pl_PL |
dc.references | Horn R. A., Johnson C. R. (2013), Matrix Analysis, Cambridge University Press, New York. | pl_PL |
dc.references | Jakubowski J., Sztencel R. (2001), Wstęp do teorii prawdopodobieństwa, SCRIPT, Warszawa. | pl_PL |
dc.references | Kelejian H. H., Piras G. (2014), Estimation of spatial models with endogenous weighting matrices, and an application to a demand model for cigarettes, „Regional Science and Urban Economics” 46: 140–149. | pl_PL |
dc.references | Kelejian H. H., Piras G. (2017), Spatial Econometrics, Academic Press, London. | pl_PL |
dc.references | Kelejian H. H., Prucha I. R. (1998), A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances, „Journal of Real Estate Finance and Economics” 17: 99–121. | pl_PL |
dc.references | Kelejian H. H., Prucha I. R. (2001), On the Asymptotic Distribution of the Moran I Test Statistic with Applications, „Journal of Econometrics” 104: 219–257. | pl_PL |
dc.references | Kelejian H. H., Prucha I. R. (2010), Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances, „Journal of Econometrics” 157 (1): 53–67. | pl_PL |
dc.references | Klaassen L. H., Paelinck J. H. P., Wagenaar S. (1979) Spatial Systems, Saxon House, Farnborough. | pl_PL |
dc.references | Kopczewska K. (2007), Ekonometria i statystyka przestrzenna z wykorzystaniem programu R CRAN, CeDeWu, Warszawa. | pl_PL |
dc.references | Kosfeld R., Lauridsen J. (2004), Dynamic spatial modeling of regional convergence processes, „Empirical Economics” 29: 705–722. | pl_PL |
dc.references | Kosfeld R., Lauridsen J. (2006), A test strategy for spurious regression, spatial nonstationarity, and spatial co-integration, „Papers in Regional Science” 85 (3): 363–377. | pl_PL |
dc.references | Kossowski T. (2010), Teoretyczne aspekty modelowania przestrzennego w badaniach regionalnych, „Rozwój Regionalny i Polityka Regionalna” 12: 9–26. | pl_PL |
dc.references | Kossowski T., Hauke J. (2011), The method of computing the Log-Jacobian of the variable transformation for spatial models – test and comments, „Acta Universitatis Lodziensis”. Folia Oeconomica 252: 161–173. | pl_PL |
dc.references | Krugman P. (1991a), Increasing returns and economic geography. „Journal of Political Economy” 99 (3): 483–499. | pl_PL |
dc.references | Krugman P. (1991b), Geography and Trade. MIT Press. | pl_PL |
dc.references | Lauridsen J. (1999), Spatial Co-integration Analysis in Econometric Modelling, „ERSA Conference Papers” ersa99pa181, European Regional Science Association. | pl_PL |
dc.references | Lauridsen J. (2006), Spatial autoregressively distributed lag models: equivalent forms, estimation and an illustrative commuting model, „The Annals of Regional Science” 40: 297–311. | pl_PL |
dc.references | La Vallée Poussin C. de (1915), Sur L’Integrale de Lebesgue, „Transactions of the American Mathematical Society” 16 (4): 435–501. | pl_PL |
dc.references | Lee L. F. (2002), Consistency and efficiency of least-squares estimation for mixed regressive spatial autoregressive models, „Econometric Theory” 18: 252–277. | pl_PL |
dc.references | Lee L. F. (2004), Asymptotic Distributions of Maximum Likelihood Estimators for Spatial Autoregressive Models, „Econometrica” 72: 1899–1925. | pl_PL |
dc.references | Lee L. F., Yu J. (2010), Estimation of spatial autoregressive panel data models with fixed effects, „Journal of Econometrics” 154 (2): 165–168. | pl_PL |
dc.references | Lee L. F., Liu X., Lin X. (2010), Specification and estimation of social interaction models with network structures. „The Econometrics Journal” 13 (2): 145–176. | pl_PL |
dc.references | Lehmann E. L., Casella G. (1998), Theory of Point Estimation, 2nd ed., Springer, New York. | pl_PL |
dc.references | LeSage J. (1999), Spatial Econometrics: The Web Book of Regional Science, Regional Research Institute, West Virginia University, Morgantown. | pl_PL |
dc.references | LeSage J., Pace, R. K. (2009), Introduction to Spatial Econometrics, Statistics: Textbooks and Monographs, Chapman and Hall, Boca Raton, Florida. | pl_PL |
dc.references | Li K. (2017), Fixed-effects dynamic spatial panel data models and impulse response analysis, „Journal of Econometrics” 198 (1): 102–121. | pl_PL |
dc.references | Liu S. F., Yang Z. (2015), Modified QML estimation of spatial autoregressive models with unknown heteroskedasticity and non-normality, „Regional Science and Urban Economics” 52: 50–70. | pl_PL |
dc.references | Łaszkiewicz E. (2016), Ekonometria przestrzenna III. Modele wielopoziomowe – teoria i zastosowania, C.H. Beck, Warszawa. | pl_PL |
dc.references | Meyer P. A. (1966), Probability and potentials, Blaisdell Publishing Co., Waltham, Mass. | pl_PL |
dc.references | Moran P. (1950), Notes on Continuous Stochastic Phenomena, „Biometrika” 37: 17–23. | pl_PL |
dc.references | Mynbaev K. T. (2010), Asymptotic distribution of the OLS estimator for a mixed spatial model, „Journal of Multivariate Analysis” 101 (3): 733–748. | pl_PL |
dc.references | Mynbaev K. T. (2011), Short-Memory Linear Processes and Econometric Applications, John Wiley and Sons, Hoboken, NJ. | pl_PL |
dc.references | Mynbaev K. T., Ullah A. (2008), Asymptotic distribution of the OLS estimator for a purely autoregressive spatial model, „Journal of Multivariate Analysis” 99 (2): 245–277. | pl_PL |
dc.references | Nijkamp P., Fischer M. M. (eds.) (2014), Handbook of Regional Science, Springer, Heidelberg. | pl_PL |
dc.references | Olejnik A. (2008), Using the spatial autoregressively distributed lag model in assessing the regional convergence of per-capita income in the EU25, „Papers in Regional Science” 87 (3): 371–384. | pl_PL |
dc.references | Olejnik A. (2013), Wybrane metody testowania modeli regresji przestrzennej, „Przegląd Statystyczny” 60 (3): 381–393. | pl_PL |
dc.references | Olejnik A., Olejnik J. (2019), Increasing returns to scale, productivity and economic growth – a spatial analysis of the contemporary EU economy, „Argumenta Oeconomica” 42 (1): 273–293. | pl_PL |
dc.references | Olejnik J., Olejnik A. (2020), QML estimation with non-summable weight matrices, „Journal of Geographical Systems” 22 (4): 469–495. | pl_PL |
dc.references | Olejnik A., Özyurt S., Olejnik J. (2020), Introducing multi-dimensional weighting factors into spatial econometric models, „Ekonomika Regiona / Economy of Region” [w recenzji]. | pl_PL |
dc.references | Ord J. K., Getis A. (1995), Local spatial autocorrelation statistics: distributional issues and an application, „Geographical Analysis” 27 (4): 286–306. | pl_PL |
dc.references | Paelinck J. H. P., Klaassen L. H. (1979), Spatial Econometrics, Saxon House, Farnborough. | pl_PL |
dc.references | Panak [Olejnik] A. (2006), Autokorelacja przestrzenna i kriging – metodologia i wybrane zastosowania, „Prace Naukowe Akademii Ekonomicznej im. Oskara Langego we Wrocławiu”, Taksonomia 13: 483–491. | pl_PL |
dc.references | Pinkse J. (1999), Asymptotic properties of Moran and related tests and testing for spatial correlation in probit models, Department of Economics, University of British Columbia and University College, London. | pl_PL |
dc.references | Pötscher M. B., Prucha I. R. (1997), Dynamic Non-linear Models: Asymptotic Theory, Springer-Verlag, Berlin, Heidelberg. | pl_PL |
dc.references | Pruss A. R. (1998), A bounded N-tuplewise independent and identically distributed counterexample to the CLT, „Probability Theory and Related Fields” 111: 323–332. | pl_PL |
dc.references | Qu X., Lee L. F. (2017), QML estimation of spatial dynamic panel data models with endogenous time varying spatial weights matrices, „Journal of Econometrics” 197: 173–201. | pl_PL |
dc.references | Rao C. R. (1948), Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation, „Proceeding of the Cambridge Philosophical Society” 40: 50–57. | pl_PL |
dc.references | Sen A. (1976), Large sample-size distribution of statistics used in testing for spatial correlation, „Geographical Analysis” 9: 175–184. | pl_PL |
dc.references | Shi W., Lee L. F. (2017), Spatial dynamic panel data models with interactive fixed effects, „Journal of Econometrics” 197: 173–201. | pl_PL |
dc.references | Silvey S. D. (1959), The Lagrangian multiplier test, „Annals of Mathematical Statistics” 30: 389–407. | pl_PL |
dc.references | Suchecki B. (red.) (2010), Ekonometria przestrzenna. Metody i modele analizy danych przestrzennych, C.H. Beck, Warszawa. | pl_PL |
dc.references | Suchecki B. (red.) (2012), Ekonometria przestrzenna II. Modele zaawansowane, C.H. Beck, Warszawa. | pl_PL |
dc.references | Szulc E. (2007), Ekonometryczna analiza wielowymiarowych procesów gospodarczych, Wydawnictwo Uniwersytetu Mikołaja Kopernika, Toruń. | pl_PL |
dc.references | Takesaki M. (1979), Theory of operator algebras I, Springer-Verlag, New York. | pl_PL |
dc.references | Tobler W. (1970), A computer movie simulating urban growth in the Detroit region, „Economic Geography Supplement” 46: 234–240. | pl_PL |
dc.references | Whittle P. (1964), On the convergence to normality of quadratic forms of independent variables, „Theory of Probability and Its Applications” 9, 103–108. | pl_PL |
dc.references | Vega S. H., Elhorst J. P. (2015), The SLX model, „Journal of Regional Science” 55 (3): 339–363. | pl_PL |
dc.references | Yu J., de Jong R., Lee L. F. (2008), Quasi-Maximum Likelihood Estimators for Spatial Dynamic Panel Data with Fixed Effects When Both n and T Are Large. „Journal of Econometrics” 146 (1): 118–134. | pl_PL |
dc.references | Zeliaś A., Grabiński T., Ludwiczak B., Malina A. (1991), Ekonometria przestrzenna, PWE, Warszawa. | pl_PL |
dc.identifier.doi | 10.18778/8220-438-4 | |