Pokaż uproszczony rekord

dc.contributor.authorSzpond, Justyna
dc.contributor.editorKrasiński, Tadeusz
dc.contributor.editorSpodzieja, Stanisław
dc.date.accessioned2020-01-28T12:29:17Z
dc.date.available2020-01-28T12:29:17Z
dc.date.issued2019
dc.identifier.citationSzpond J., A few introductory remarks on line arrangements, in: Analytic and Algebraic Geometry 3, T. Krasiński, S. Spodzieja (red.), WUŁ, Łódź 2019, doi: 10.18778/8142-814-9.15.pl_PL
dc.identifier.isbn978-83-8142-814-9
dc.identifier.urihttp://hdl.handle.net/11089/31346
dc.description.abstractPoints and lines can be regarded as the simplest geometrical objects. Incidence relations between them have been studied since ancient times. Strangely enough our knowledge of this area of mathematics is still far from being complete. In fact a number of interesting and apparently difficult conjectures has been raised just recently. Additionally a number of interesting connections to other branches of mathematics have been established. This is an attempt to record some of these recent developments.pl_PL
dc.language.isoenpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofAnalytic and Algebraic Geometry 3;
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.titleA few introductory remarks on line arrangementspl_PL
dc.typeBook chapterpl_PL
dc.page.number201-212pl_PL
dc.contributor.authorAffiliationPedagogical University of Cracow, Department of Mathematicspl_PL
dc.identifier.eisbn978-83-8142-815-6
dc.referencesM. Aigner and G. M. Ziegler. Proofs from The Book. Springer, Berlin, sixth edition, 2018. See corrected reprint of the 1998 original [ MR1723092], Including illustrations by Karl H. Hofmann.pl_PL
dc.referencesM. Artebani and I. Dolgachev. The Hesse pencil of plane cubic curves. Enseign. Math. (2), 55(3-4):235-273, 2009.pl_PL
dc.referencesT. Bauer, S. Di Rocco, B. Harbourne, J. Huizenga, A. Lundman, P. Pokora, and T. Szemberg. Bounded negativity and arrangements of lines. Int. Math. Res. Not. IMRN, (19):9456{9471, 2015.pl_PL
dc.referencesT. Bauer, G. Malara, T. Szemberg, and J. Szpond. Quartic unexpected curves and surfaces. Manuscripta Math., to appear, doi.org/10.1007/s00229-018-1091-3.pl_PL
dc.referencesC. Bocci and B. Harbourne. Comparing powers and symbolic powers of ideals. J. Algebraic Geom., 19(3):399-417, 2010.pl_PL
dc.referencesC. Bocci and B. Harbourne. The resurgence of ideals of points and the containment problem. Proc. Amer. Math. Soc., 138(4):1175-1190, 2010.pl_PL
dc.referencesD. Cook II, B. Harbourne, J. Migliore, and U. Nagel. Line arrangements and con gurations of points with an unexpected geometric property. Compos. Math., 154(10):2150-2194, 2018.pl_PL
dc.referencesH. S. M. Coxeter. A problem of collinear points. Amer. Math. Monthly, 55:26-28, 1948.pl_PL
dc.referencesD. W. Crowe and T. A. McKee. Sylvester's problem on collinear points. Math. Mag., 41:30- 34, 1968.pl_PL
dc.referencesJ. Csima and E. T. Sawyer. There exist 6n=13 ordinary points. Discrete Comput. Geom., 9(2):187-202, 1993.pl_PL
dc.referencesA. Czapliński, A. Główka, G. Malara, M. Lampa-Baczyńska, P. Luszcz-Świdecka, P. Pokora, and J. Szpond. A counterexample to the containment I(3) I2 over the reals. Adv. Geom., 16(1):77-82, 2016.pl_PL
dc.referencesN. G. de Bruijn and P. Erd os. On a combinatorial problem. Nederl. Akad. Wetensch., Proc., 51:1277{1279 = Indagationes Math. 10, 421-423 (1948), 1948.pl_PL
dc.referencesR. Di Gennaro, G. Ilardi, and J. Vall es. Singular hypersurfaces characterizing the Lefschetz properties. J. Lond. Math. Soc. (2), 89(1):194-212, 2014.pl_PL
dc.referencesM. Dumnicki, B. Harbourne, U. Nagel, A. Seceleanu, T. Szemberg, and H. Tutaj-Gasińska. Resurgences for ideals of special point con gurations in PN coming from hyperplane arrangements. J. Algebra, 443:383-394, 2015.pl_PL
dc.referencesM. Dumnicki, D. Harrer, and J. Szpond. On absolute linear Harbourne constants. Finite Fields Appl., 51:371-387, 2018.pl_PL
dc.referencesM. Dumnicki, T. Szemberg, and H. Tutaj-Gasińska. Counterexamples to the I(3) I2 containment. J. Algebra, 393:24-29, 2013.pl_PL
dc.referencesL. Ein, R. Lazarsfeld, and K. E. Smith. Uniform bounds and symbolic powers on smooth varieties. Invent. Math., 144(2):241-{252, 2001.pl_PL
dc.referencesL. Farnik, F. Galuppi, L. Sodomaco, and W. Trok. On the unique unexpected quartic in P2. arXiv:1804.03590.pl_PL
dc.referencesZ. Furedi and I. Palasti. Arrangements of lines with a large number of triangles. Proc. Amer. Math. Soc., 92(4):561-566, 1984.pl_PL
dc.referencesA. V. Geramita, B. Harbourne, and J. Migliore. Star con gurations in Pn. J. Algebra, 376:279-299, 2013.pl_PL
dc.referencesB. Green and T. Tao. On sets de ning few ordinary lines. Discrete Comput. Geom., 50(2):409-468, 2013.pl_PL
dc.referencesE. Grifo, C. Huneke, and V. Mukundan. Expected resurgences and symbolic powers of ideals, arXiv:1903.12122.pl_PL
dc.referencesK. Hanumanthu and B. Harbourne. Real and complex supersolvable line arrangements in the projective plane, arXiv:1907.07712.pl_PL
dc.referencesB. Harbourne and C. Huneke. Are symbolic powers highly evolved? J. Ramanujan Math. Soc., 28A:247-266, 2013.pl_PL
dc.referencesB. Harbourne and A. Seceleanu. Containment counterexamples for ideals of various con gurations of points in PN. J. Pure Appl. Algebra, 219(4):1062-1072, 2015.pl_PL
dc.referencesO. Hesse. Uber die Elimination der Variabeln aus drei algebraischen Gleichungen vom zweiten Grade mit zwei Variabeln. J. Reine Angew. Math., 28:68-96, 1844.pl_PL
dc.referencesF. Hirzebruch. Arrangements of lines and algebraic surfaces. In Arithmetic and geometry, Vol. II, volume 36 of Progr. Math., pages 113{140. Birkhauser, Boston, Mass., 1983.pl_PL
dc.referencesM. Hochster and C. Huneke. Comparison of symbolic and ordinary powers of ideals. Invent. Math., 147(2):349-369, 2002.pl_PL
dc.referencesJ. Jackson. Rational Amusement for Winter Evenings. Longman, Hurst, Rees, Orme and Brown, London, 1821.pl_PL
dc.referencesL. M. Kelly and W. O. J. Moser. On the number of ordinary lines determined by n points. Canadian J. Math., 10:210-219, 1958.pl_PL
dc.referencesC. W. H. Lam. The search for a nite projective plane of order 10 [ MR1103185 (92b:51013)]. In Organic mathematics (Burnaby, BC, 1995), volume 20 of CMS Conf. Proc., pages 335{ 355. Amer. Math. Soc., Providence, RI, 1997.pl_PL
dc.referencesM. Lampa-Baczyńska and J. Szpond. From Pappus Theorem to parameter spaces of some extremal line point con gurations and applications. Geom. Dedicata, 188:103-121, 2017.pl_PL
dc.referencesL. Ma and K. Schwede. Perfectoid multiplier/test ideals in regular rings and bounds on symbolic powers. Invent. Math., 214(2):913-955, 2018.pl_PL
dc.referencesE. Melchior. Uber Vielseite der projektiven Ebene. Deutsche Math., 5:461-475, 1941.pl_PL
dc.referencesT. Motzkin. The lines and planes connecting the points of a nite set. Trans. Amer. Math. Soc., 70:451-464, 1951.pl_PL
dc.referencesP. Pokora. Extremal properties of line arrangements in the complex projective plane, in this volume.pl_PL
dc.referencesI. Swanson. Linear equivalence of ideal topologies. Math. Z., 234(4):755-775, 2000.pl_PL
dc.referencesJ. J. Sylvester. Problem 11851, Math. Questions from the Educational Times 59 (1893), 98-99.pl_PL
dc.referencesJ. Szpond. On Hirzebruch type inequalities and applications. In Extended abstracts February 2016|positivity and valuations, volume 9 of Trends Math. Res. Perspect. CRM Barc., pages 89-94. Birkh auser/Springer, Cham, 2018.pl_PL
dc.referencesJ. Szpond. Fermat-type arrangements, arXiv:1909.04089.pl_PL
dc.contributor.authorEmailszpond@up.krakow.plpl_PL
dc.identifier.doi10.18778/8142-814-9.15


Pliki tej pozycji

Thumbnail
Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe