dc.contributor.author | Pokora, Piotr | |
dc.contributor.editor | Krasiński, Tadeusz | |
dc.contributor.editor | Spodzieja, Stanisław | |
dc.date.accessioned | 2020-01-28T12:12:31Z | |
dc.date.available | 2020-01-28T12:12:31Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Pokora P., Extremal properties of line arrangements in the complex projective plane, in: Analytic and Algebraic Geometry 3, T. Krasiński, S. Spodzieja (red.), WUŁ, Łódź 2019, doi: 10.18778/8142-814-9.14. | pl_PL |
dc.identifier.isbn | 978-83-8142-814-9 | |
dc.identifier.uri | http://hdl.handle.net/11089/31345 | |
dc.description.abstract | In the present note we study some extreme properties of point-line configurations in the complex projective plane from a viewpoint of algebraic geometry. Using Hirzebruch-type inequalites we provide some new results on r-rich lines, symplicial arrangements of lines, and the so-called free line arrangmenets. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartof | Analytic and Algebraic Geometry 3; | |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 Międzynarodowe | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | * |
dc.title | Extremal properties of line arrangements in the complex projective plane | pl_PL |
dc.type | Book chapter | pl_PL |
dc.page.number | 191-200 | pl_PL |
dc.contributor.authorAffiliation | Pedagogical University of Cracow, Department of Mathematics | pl_PL |
dc.identifier.eisbn | 978-83-8142-815-6 | |
dc.references | J. Bokowski and P. Pokora, On line and pseudoline con gurations and ball-quotients. Ars Math. Contemp. 13(2): 409-416 (2017). | pl_PL |
dc.references | R. Bojanowski, Zastosowania uog olnionej nier owno sci Bogomolova-Miyaoka-Yau. Master Thesis (in Polish), http://www.mimuw.edu.pl/%7Ealan/postscript/bojanowski.ps, 2003. | pl_PL |
dc.references | W. Brass & W. Moser & J. Pach, Research Problems in Discrete Geometry. Springer Science+ Business Media, Inc., 2005. | pl_PL |
dc.references | M. Cuntz, (224) and (264) con gurations of lines. Ars Math. Contemp. 14(1): 157-163 (2018). | pl_PL |
dc.references | A. Dimca, Hyperplane arrangements. An introduction. Universitext. Cham: Springer (ISBN 978-3-319-56220-9/pbk; 978-3-319-56221-6/ebook). xii, 200 p. (2017). | pl_PL |
dc.references | F. de Zeeuw, Spanned lines and Langer's inequality. arXiv:1802.08015. | pl_PL |
dc.references | F. de Zeeuw, Ordinary lines in space. arXiv:1803.09524. | pl_PL |
dc.references | D. Geis, On the combinatorics of Tits arrangements. Hannover: Gottfried Wilhelm Leibniz Universit at, Diss. v, 101 p. (2018), https://doi.org/10.15488/3483. | pl_PL |
dc.references | F. Hirzebruch, Arrangements of lines and algebraic surfaces. Arithmetic and geometry, Vol.II, Progr. Math., vol. 36, Birkhauser Boston, Mass.: 113-140 (1983). | pl_PL |
dc.references | E. Melchior, Uber Vielseite der Projektive Ebene. Deutsche Mathematik 5: 461-475 (1941). | pl_PL |
dc.references | Y. Miyaoka: On the Chern numbers of surfaces of general type. Invent. Math. 42(1): 225-237 (1977). | pl_PL |
dc.references | P. Orlik & H. Terao, Arrangements of hyperplanes. Grundlehren der Mathematischen Wissenschaften. 300. Berlin: Springer- Verlag. xviii, 325 p. (1992). | pl_PL |
dc.references | H. Terao, Generalized exponents of a free arrangement of hyperplanes and Shepard-Todd- Brieskorn formula. Invent. Math. 63: 159-179 (1981). | pl_PL |
dc.references | I. N. Shnurnikov, A tk inequality for arrangements of pseudolines. Discrete Comput Geom 55: 284-295 (2016). | pl_PL |
dc.contributor.authorEmail | piotrpkr@gmail.com | pl_PL |
dc.identifier.doi | 10.18778/8142-814-9.14 | |