Show simple item record

dc.contributor.authorBogucki, Krystian
dc.date.accessioned2020-01-15T12:09:38Z
dc.date.available2020-01-15T12:09:38Z
dc.date.issued2018
dc.identifier.issn1689-4286
dc.identifier.urihttp://hdl.handle.net/11089/31166
dc.description.abstractGottlob Frege abandoned his logicist program after Bertrand Russell had discovered that some assumptions of Frege’s system lead to contradiction (so called Russell’s paradox). Nevertheless, he proposed a new attempt for the foundations of mathematics in two last years of his life. According to this new program, the whole of mathematics is based on the geometrical source of knowledge. By the geometrical source of cognition Frege meant intuition which is the source of an infinite number of objects in arithmetic. In this article, I describe this final attempt of Frege to provide the foundations of mathematics. Furthermore, I compare Frege’s views of intuition from The Foundations of Arithmetic (and his later views) with the Kantian conception of pure intuition as the source of geometrical axioms. In the conclusion of the essay, I examine some implications for the debate between Hans Sluga and Michael Dummett concerning the realistic and idealistic interpretations of Frege’s philosophy.pl_PL
dc.language.isoplpl_PL
dc.publisherInstytut Filozofii Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofseriesInternetowy Magazyn Filozoficzny Hybris;44
dc.subjectFregepl_PL
dc.subjectThe Foundations of Mathematicspl_PL
dc.subjectGeometrypl_PL
dc.subjectKantpl_PL
dc.subjectPodstawy Matematykipl_PL
dc.subjectGeometriapl_PL
dc.title„Cała matematyka to właściwie geometria”. Poglądy Gottloba Fregego na podstawy matematyki po upadku logicyzmupl_PL
dc.title.alternative‘Mathematics in its entirety is really geometry’. Gottlob Frege’s view of the foundations of mathematics after the fall of logicist programpl_PL
dc.typeArticlepl_PL
dc.rights.holder© Internetowy Magazyn Filozoficzny HYBRIS 2019pl_PL
dc.page.number1-20pl_PL
dc.contributor.authorAffiliationUniwersytet Warszawski, Instytut Filozofiipl_PL
dc.referencesBurge, T. (2005). Truth, Thought, Reason: Essays on Frege, New York: Oxford University Press.pl_PL
dc.referencesDummett, M. (1991). Frege and Other Philosophers, New York: Clarendon Press.pl_PL
dc.referencesDummett, M. (1993). Frege: Philosophy of Language. Second Edition, Cambridge: Harvard University Press.pl_PL
dc.referencesFurth, M. (1964). Editor’s Introduction, W: Frege, G., The Basic Laws of Arithmetic: Exposition of the System, tłum. Montgomery Furth. Berkeley: University of California Press.pl_PL
dc.referencesFrege, G. (1960). The Foundations of Arithmetic: A logico-mathematical enquiry into the concept of number, tłum. J. L. Austin, Oxford: Blackwell.pl_PL
dc.referencesFrege, G., (1964). The Basic Laws of Arithmetic: Exposition of the System, tłum. Montgomery Furth. Berkeley: University of California Press.pl_PL
dc.referencesFrege, G., (1973). Schriften zur Logik. Aus dem Nachlaß, Berlin: Akademie-Verlag.pl_PL
dc.referencesFrege, G., (1979). Posthumous Writings. tłum. Peter Long and Roger White, Chicago: University of Chicago Press.pl_PL
dc.referencesKant, I. (2010a). Krytyka Czystego Rozumu, t. I, tłum. R. Ingarden, Warszawa: WN PWN.pl_PL
dc.referencesKant, I. (2010b). Krytyka Czystego Rozumu, t. II, tłum. R. Ingarden, Warszawa: WN PWN.pl_PL
dc.referencesMacFarlane, J. (2002). Frege, Kant, and the Logic in Logicism, Philosophical Review, 111/1: 25–66.pl_PL
dc.referencesPoręba, M. (2017). Kant a Konstruktywizm, W: Poręba, M., Wolność i Metafizyka. Eseje z Filozofii Pierwszej (228 – 241), Warszawa: PWN.pl_PL
dc.referencesSluga, H. (1977). Frege’s Alleged Realism, Inquiry, 20 (1-4), 227 – 242.pl_PL
dc.referencesSluga, H. (1980). Gottlob Frege, London: Routledge & Kegan Paul.pl_PL
dc.relation.volume1pl_PL
dc.disciplinefilozofiapl_PL


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record