dc.contributor.author | Bogucki, Krystian | |
dc.date.accessioned | 2020-01-15T12:09:38Z | |
dc.date.available | 2020-01-15T12:09:38Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 1689-4286 | |
dc.identifier.uri | http://hdl.handle.net/11089/31166 | |
dc.description.abstract | Gottlob Frege abandoned his logicist program after Bertrand Russell had
discovered that some assumptions of Frege’s system lead to
contradiction (so called Russell’s paradox). Nevertheless, he proposed a
new attempt for the foundations of mathematics in two last years of his
life. According to this new program, the whole of mathematics is based
on the geometrical source of knowledge. By the geometrical source of
cognition Frege meant intuition which is the source of an infinite
number of objects in arithmetic. In this article, I describe this final
attempt of Frege to provide the foundations of mathematics.
Furthermore, I compare Frege’s views of intuition from The Foundations
of Arithmetic (and his later views) with the Kantian conception of pure
intuition as the source of geometrical axioms. In the conclusion of the
essay, I examine some implications for the debate between Hans Sluga
and Michael Dummett concerning the realistic and idealistic
interpretations of Frege’s philosophy. | pl_PL |
dc.language.iso | pl | pl_PL |
dc.publisher | Instytut Filozofii Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartofseries | Internetowy Magazyn Filozoficzny Hybris;44 | |
dc.subject | Frege | pl_PL |
dc.subject | The Foundations of Mathematics | pl_PL |
dc.subject | Geometry | pl_PL |
dc.subject | Kant | pl_PL |
dc.subject | Podstawy Matematyki | pl_PL |
dc.subject | Geometria | pl_PL |
dc.title | „Cała matematyka to właściwie geometria”. Poglądy Gottloba Fregego na podstawy matematyki po upadku logicyzmu | pl_PL |
dc.title.alternative | ‘Mathematics in its entirety is really geometry’. Gottlob Frege’s view of the foundations of mathematics after the fall of logicist program | pl_PL |
dc.type | Article | pl_PL |
dc.rights.holder | © Internetowy Magazyn Filozoficzny HYBRIS 2019 | pl_PL |
dc.page.number | 1-20 | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Warszawski, Instytut Filozofii | pl_PL |
dc.references | Burge, T. (2005). Truth, Thought, Reason: Essays on Frege, New York: Oxford University Press. | pl_PL |
dc.references | Dummett, M. (1991). Frege and Other Philosophers, New York: Clarendon Press. | pl_PL |
dc.references | Dummett, M. (1993). Frege: Philosophy of Language. Second Edition, Cambridge: Harvard University Press. | pl_PL |
dc.references | Furth, M. (1964). Editor’s Introduction, W: Frege, G., The Basic Laws of Arithmetic: Exposition of the System, tłum. Montgomery Furth. Berkeley: University of California Press. | pl_PL |
dc.references | Frege, G. (1960). The Foundations of Arithmetic: A logico-mathematical enquiry into the concept of number, tłum. J. L. Austin, Oxford: Blackwell. | pl_PL |
dc.references | Frege, G., (1964). The Basic Laws of Arithmetic: Exposition of the System, tłum. Montgomery Furth. Berkeley: University of California Press. | pl_PL |
dc.references | Frege, G., (1973). Schriften zur Logik. Aus dem Nachlaß, Berlin: Akademie-Verlag. | pl_PL |
dc.references | Frege, G., (1979). Posthumous Writings. tłum. Peter Long and Roger White, Chicago: University of Chicago Press. | pl_PL |
dc.references | Kant, I. (2010a). Krytyka Czystego Rozumu, t. I, tłum. R. Ingarden, Warszawa: WN PWN. | pl_PL |
dc.references | Kant, I. (2010b). Krytyka Czystego Rozumu, t. II, tłum. R. Ingarden, Warszawa: WN PWN. | pl_PL |
dc.references | MacFarlane, J. (2002). Frege, Kant, and the Logic in Logicism, Philosophical Review, 111/1: 25–66. | pl_PL |
dc.references | Poręba, M. (2017). Kant a Konstruktywizm, W: Poręba, M., Wolność i Metafizyka. Eseje z Filozofii Pierwszej (228 – 241), Warszawa: PWN. | pl_PL |
dc.references | Sluga, H. (1977). Frege’s Alleged Realism, Inquiry, 20 (1-4), 227 – 242. | pl_PL |
dc.references | Sluga, H. (1980). Gottlob Frege, London: Routledge & Kegan Paul. | pl_PL |
dc.relation.volume | 1 | pl_PL |
dc.discipline | filozofia | pl_PL |