dc.contributor.author | Baszczyńska, Aleksandra | |
dc.date.accessioned | 2018-02-08T14:58:24Z | |
dc.date.available | 2018-02-08T14:58:24Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 0208-6018 | |
dc.identifier.uri | http://hdl.handle.net/11089/24029 | |
dc.description.abstract | Ad hoc methods in the choice of smoothing parameter in kernel density estimation, although often used in practice due to their simplicity and hence the calculated efficiency, are characterized by quite big error. The value of the smoothing parameter chosen by Silverman method is close to optimal value only when the density function in population is the normal one. Therefore, this method is mainly used at the initial stage of determining a kernel estimator and can be used only as a starting point for further exploration of the smoothing parameter value. This paper presents ad hoc methods for determining the smoothing parameter. Moreover, the interval of smoothing parameter values is proposed in the estimation of kernel density function. Basing on the results of simulation studies, the properties of smoothing parameter selection methods are discussed. | en_GB |
dc.description.abstract | Metody ad hoc wyboru parametru wygładzania w estymacji jądrowej funkcji gęstości, chociaż często wykorzystywane w praktyce ze względu na ich prostotę i – co za tym idzie – wysoką efektywność obliczeniową, charakteryzują się dość dużym błędem. Wartość parametru wygładzania wyznaczona metodą Silvermana jest bliska wartości optymalnej tylko wtedy, gdy rozkład funkcji gęstości jest rozkładem normalnym. Dlatego też metoda ta jest stosowana przede wszystkim we wstępnym etapie wyznaczania estymatora jądrowego i stanowi jedynie punkt wyjściowy do dalszych poszukiwań wartości parametru wygładzania. W artykule przedstawione są metody ad hoc wyboru parametru wygładzania oraz zaprezentowana jest propozycja wyznaczania przedziału wartości parametru wygładzania w estymacji jądrowej funkcji gęstości. Na podstawie wyników badań symulacyjnych określone są własności rozważanych metod wyboru parametru wygładzania. | pl_PL |
dc.description.sponsorship | Department of Statistical Methods University of Łódź | en_GB |
dc.language.iso | en | en_GB |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | en_GB |
dc.relation.ispartofseries | Acta Universitatis Lodziensis. Folia Oeconomica;332 | |
dc.subject | kernel density estimation | en_GB |
dc.subject | smoothing parameter | en_GB |
dc.subject | ad hoc methods | en_GB |
dc.subject | estymacja jądrowa funkcji gęstości | pl_PL |
dc.subject | parametr wygładzania | pl_PL |
dc.subject | metody ad hoc | pl_PL |
dc.title | One Value of Smoothing Parameter vs Interval of Smoothing Parameter Values in Kernel Density Estimation | en_GB |
dc.title.alternative | Jedna wartość parametru wygładzania vs. przedział wartości parametru wygładzania w estymacji jądrowej funkcji gęstości | pl_PL |
dc.type | Article | en_GB |
dc.rights.holder | © Copyright by Authors, Łódź 2017; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2017 | en_GB |
dc.page.number | 73-86 | |
dc.contributor.authorAffiliation | University of Łódź, Faculty of Economics and Sociology, Department of Statistical Methods | |
dc.identifier.eissn | 2353-7663 | |
dc.references | Baszczyńska A. (2014). Computer-Assisted Choice of Smoothing Parameter in Kernel Methods Applied in Economic Analysis. Quantitative Methods in Economics (Metody Ilościowe w Badaniach Ekonomicznych). Warsaw University of Life Sciences Press. Warsaw. XV/2. 37-46. | pl_PL |
dc.references | Baszczyńska A. (2016). Nonclassical Parameters in Kernel Estimation. Bulletin de la Société des Sciences et des Letters de Łódź. Recherches sur les Déformations. 1. LXVI. 2016. 135-148. | pl_PL |
dc.references | Heidenreich N.. Schindler A.. Sperlich S. (2013). Bandwidth Selection for Kernel Density Estimation: a Review of Fully Automatic Selectors. AStA Advances in Statistical Analysis. 97. 4. 403–433. | pl_PL |
dc.references | Horová I.. Koláček J.. Zelinka J. (2012). Kernel Smoothing in Matlab. Theory and Practice of Kernel Smoothing. World Scientific. New Jersey. | pl_PL |
dc.references | Li Q.. Racine J. S. (2007). Nonparametric Econometrics. Theory and Practice. Princeton University Press. Princeton and Oxford. | pl_PL |
dc.references | Kulczycki P. (2005). Estymatory jądrowe w analizie systemowej. Wydawnictwa Naukowo-Techniczne. Warszawa. | pl_PL |
dc.references | Pekasiewicz D. (2015). Statystyki pozycyjne w procedurach estymacji i ich zastosowania w badaniach ekonomicznych. Wydawnictwo Uniwersytetu Łódzkiego. Łódź. | pl_PL |
dc.references | Silverman B.W. (1996). Density Estimation for Statistics and Data Analysis. Chapman and Hall. London. | pl_PL |
dc.references | Scott D. (2015). Multivariate Density Estimation. Theory, Practice, and Visualization. Wiley. Hoboken, New Jersey. | pl_PL |
dc.references | Wand M. P.. Jones M.C. (1995). Kernel Smoothing. Chapman and Hall. London. | pl_PL |
dc.contributor.authorEmail | albasz@uni.lodz.pl | |
dc.identifier.doi | 10.18778/0208-6018.332.05 | |
dc.relation.volume | 6 | en_GB |
dc.subject.jel | C10 | |
dc.subject.jel | C13 | |
dc.subject.jel | C14 | |