dc.contributor.author | Walewska, Justyna | |
dc.contributor.editor | Krasiński, Tadeusz | |
dc.contributor.editor | Spodzieja, Stanisław | |
dc.date.accessioned | 2017-12-13T10:53:58Z | |
dc.date.available | 2017-12-13T10:53:58Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Walewska J., The jump of Milnor numbers in families of non-degenerate and non-convenient singularities , [in:] Krasiński T., Spodzieja S. (eds.), Analytic and Algebraic Geometry, Łódź University Press, Łódź 2013, s. 141-153, doi: 10.18778/7969-017-6.11 | pl_PL |
dc.identifier.isbn | 978-83-7969-017-6 | |
dc.identifier.uri | http://hdl.handle.net/11089/23612 | |
dc.description.abstract | The non-degenerate jump of the Milnor number of an isolated
singularity f0 is the minimal non-zero difference between the Milnor numbers
of f0 and one of its non-degenerate deformations (fs). In the paper the results
by Bodin and the author (concerning the non-degenerate jump) are generalized
to non-convenient singularities. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartof | Krasiński T., Spodzieja S. (eds.), Analytic and Algebraic Geometry, Łódź University Press, Łódź 2013; | |
dc.rights | Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/pl/ | * |
dc.title | The jump of Milnor numbers in families of non-degenerate and non-convenient singularities | pl_PL |
dc.type | Book chapter | pl_PL |
dc.rights.holder | © Copyright by University of Łódź, Łódź 2013 | pl_PL |
dc.page.number | 141-153 | pl_PL |
dc.contributor.authorAffiliation | Faculty of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź | pl_PL |
dc.references | A. Bodin, Jump of Milnor numbers, Bull. Braz. Math. Soc. Vol. 38 No. 3 (2007), 389-396. | pl_PL |
dc.references | S. Brzostowski, T. Krasiński, The Jump of the Milnor Numbers in the X9 singularity class, Proceedings of the XXXIII Workshop of Analytic and Algebraic Geometry, (2012), http://konfrogi.math.uni.lodz.pl. | pl_PL |
dc.references | S. Gusein-Zade, On singularities from which an A1 can be split off, Funct. Anal. Appl. 27 (1993), 57-59. | pl_PL |
dc.references | G.-M Greuel, C. Lossen, E. Shustin, Introduction to singularities and deformations, Springer Monographs in Mathematics, Springer, Berlin, (2007). | pl_PL |
dc.references | A. Kouchnirenko, Polyédres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1-31. | pl_PL |
dc.references | A. Lenarcik, On the Łojasiewicz exponent of the gradient of the holomorphic function, Singularities, Banach Center Publ. Vol. 44 (1998), 149-166. | pl_PL |
dc.references | ] A. Lenarcik, On the Jacobian Newton polygon of plane curve singularities, Manuscripta Math. Vol. 125 No. 3 (2008), 309-324. | pl_PL |
dc.references | A. Płoski, A. Lenarcik, E. Barroso, Characterization of non-degenerate plane curve singularities, Univ. Iagel. Acta Math. No. 45 (2007), 27-36. | pl_PL |
dc.references | G. Oleksik, Łojasiewicz exponent of non-degenerate singularities, Proceedings of the XXX Workshop of Analytic and Algebraic Geometry, (2009), (in Polish), http://konfrogi.math.uni.lodz.pl. | pl_PL |
dc.references | J. Walewska, The second jump of Milnor numbers, Demonstratio Math. Vol. XLIII No. 2 (2010), 361-374. | pl_PL |
dc.contributor.authorEmail | walewska@math.uni.lodz.pl | pl_PL |
dc.identifier.doi | 10.18778/7969-017-6.11 | |