Pokaż uproszczony rekord

dc.contributor.authorOleksik, Grzegorz
dc.contributor.editorKrasiński, Tadeusz
dc.contributor.editorSpodzieja, Stanisław
dc.date.accessioned2017-12-13T10:44:33Z
dc.date.available2017-12-13T10:44:33Z
dc.date.issued2013
dc.identifier.citationOleksik G., On combinatorial criteria for isolated singularities, [in:] Krasiński T., Spodzieja S. (eds.), Analytic and Algebraic Geometry, Łódź University Press, Łódź 2013, s. 81-94, doi: 10.18778/7969-017-6.07pl_PL
dc.identifier.isbn978-83-7969-017-6
dc.identifier.urihttp://hdl.handle.net/11089/23611
dc.description.abstractIn this article we review combinatorial characterizations of isolated singularities. As a new result in two and three-dimensional case we give sufficient and necessary conditions for a nondegenerate singularity to be isolated in terms of its support. We also prove new sufficient conditions in the multidimensional case.pl_PL
dc.language.isoenpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofKrasiński T., Spodzieja S. (eds.), Analytic and Algebraic Geometry, Łódź University Press, Łódź 2013;
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pl/*
dc.titleOn combinatorial criteria for isolated singularitiespl_PL
dc.typeBook chapterpl_PL
dc.rights.holder© Copyright by University of Łódź, Łódź 2013pl_PL
dc.page.number81-94pl_PL
dc.contributor.authorAffiliationFaculty of Mathematics and Computer Science, University of Łódź Banacha 22, 90-238 Łódźpl_PL
dc.referencesArnold, V. I.: Normal forms of functions in neighborhoods of degenerate critical points. Russian Math. Surveys 29 (1974), 10-50.pl_PL
dc.referencesArnold, V. I., Gusein-Zade S. M., Varchenko A. N.: Singularities of Differentiable Maps. Vol. 1, Monographs Math., Vol. 82, Birkhäuser, Boston 1985.pl_PL
dc.referencesBrzostowski S., Krasinski, T. and Oleksik, G.: A conjecture on the Łojasiewicz exponent, J. Singul. 6 (2012), 124-130.pl_PL
dc.referencesBourbaki, N.: Lie groups and Lie Algebras, Hermann, Paris 1971.pl_PL
dc.referencesR.C. Gunning, Introduction to Holomorphic Functions of Several Variables, Vol. II (Wadsworth & Brooks/Cole), 1990.pl_PL
dc.referencesHertling, C. and Kurbel, R.: On the classification of quasihomogeneous singularities, J. Singul. 4 (2012), 131-153.pl_PL
dc.referencesKouchnirenko, A. G.: Polyèdres de Newton et nombres de Milnor, Invent. Math. 32 (1976), 1-31.pl_PL
dc.referencesKouchnirenko, A. G.: Criteria for the existence of a non-degenerate quasihomogeneous function with given weights, (In Russian.) Usp. Mat Nauk 32:3 (1977), 169-170.pl_PL
dc.referencesKreuzer, M. and Skarke, H.: On the classification of quasihomogeneous function, Commun. Math. Phys. 150 (1992), 137-147.pl_PL
dc.referencesLenarcik, A.: On the Łojasiewicz exponent of the gradient holomorphic function, PhD Thesis, University of Łódź (1996).pl_PL
dc.referencesLenarcik, A.: On the Jacobian Newton polygon of plane curve singularities, Manuscripta Math. 125 (2008), 309-324.pl_PL
dc.referencesOleksik, G.: The Łojasiewicz exponent of nondegenerate surface singularity, Acta. Math. Hungar. 138 (2013), 179-199.pl_PL
dc.referencesOrlik, P. and Randell, R.: The classification and monodromy of weighted homogeneous singularities, Preprint, (1976 or 1977), 40 pages.pl_PL
dc.referencesOrlik, P. and Randell, R.: The monodromy of weighted homogeneous singularities, Invent. Math. 39 (1977), 199-201.pl_PL
dc.referencesShcherbak, O.P.: Conditions for the existence of a non-degenerate mapping with a given support, Func. Anal. Appl 13 (1979), 154-155.pl_PL
dc.referencesSaito, K.: Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math. 14 (1971), 123-142.pl_PL
dc.referencesSaito, K.: Regular systems of weights and their associated singularities, In: Complex analytic singularities. Advanced Studies in Pure Math. 8, Kinokuniya & North Holland 1987, 479-526.pl_PL
dc.referencesWall, C.T.C.: Weighted homogeneous complete intersection, In: Algebraic geometry and singularities (La Rábida, 1991). Progr. Math. 134, Birkhäuser, Basel (1996), 277-300.pl_PL
dc.referencesWall, C.T.C.: Newton polytopes and non-degeneracy, J. Reine Angew. Math. 509 (1999), 1-19.pl_PL
dc.contributor.authorEmailoleksig@math.uni.lodz.plpl_PL
dc.identifier.doi10.18778/7969-017-6.07


Pliki tej pozycji

Thumbnail
Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska