dc.contributor.author | Jung, Elżbieta | |
dc.date.accessioned | 2017-11-17T17:55:52Z | |
dc.date.available | 2017-11-17T17:55:52Z | |
dc.date.issued | 2014 | |
dc.identifier.citation | Jung E., Arystoteles na nowo odczytany. Ryszarda Kilvingtona „Kwestie o ruchu”, Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2014, doi: 10.18778/7969-384-9 | pl_PL |
dc.identifier.isbn | 978-83-7969-384-9 | |
dc.identifier.uri | http://hdl.handle.net/11089/23302 | |
dc.description | Prezentowana książka jest efektem wieloletnich badań dotyczących wyjątkowego okresu w historii nauki średniowiecznej, mianowicie początków fizyki matematycznej. Składają się na nią dwie części: monografia, w której autorka odpowiada na pytanie, czy czternastowieczna fizyka matematyczna, inspirowana nominalistyczną filozofią Wilhelma Ockhama, doprowadziła do zerwania z jakościową fizyką Arystotelesa już w wieku czternastym, oraz tłumaczenie „Kwestii o ruchu” Ryszarda Kilvingtona -jednego z twórców szkoły Oksfordzkich Kalkulatorów. W swoich kwestiach Kilvington podejmuje analizę zagadnienia zmian, rozumianych, zgodnie z definicją Arystotelesa, jako ruch przestrzenny, zmiany jakościowe oraz ilościowe w ujęciu nominalistycznym, czyniąc matematykę właściwym językiem opisu przyrody. Jakiego rodzaju są te „obliczenia" i jakie dzięki nim osiągamy rezultaty, Czytelnik dowie się z lektury obydwu części tej książki. | pl_PL |
dc.description.abstract | The impulse to this book was a question that I was asked after my talk on
God and science in the Middle Ages, whether I was able to give a positive
answer to the problem, which I had signalled in my previous book Między
filozofią przyrody a nowożytnym przyrodoznastwem. Ryszard Kilvington i fizyka
matematyczna w średniowieczu, namely that I did not know what medieval
science had been and what respect it had to the modern science. I have decided
that the best way to answer that question is to show the readers on the
example of one of the medieval texts dealing with physics and, more specifically,
one of the fourteenth century commentaries to Aristotle’s Physics. My
choice, with regard to my long standing interest in Richard Kilvington, was
obvious. I decided to present a Polish translation of his Question on motion
along with a monograph. The main purpose of this study is to verify, through
detailed analyses, the commonly accepted view about the revolutionary
character of the new theory of motion invented and developed by the members
of the so-called school of Oxford Calculators, which was founded by
Richard Kilvington and Thomas Bradwardine.
The book consists of two parts. The first one presents results of research
concerning Richard Kilvington’s biography and dating of his works, a description
of his four questions on motion, methods he used in philosophy of
nature, and his theories set against the background of two famous fourteenth
century thinkers: William of Ockham and Thomas Bradwardine. The second
part presents a Polish translation of Kilvington’s four questions – a result of
his lectures on Aristotle’s Physics. These questions are: 1) Whether an active
potency exceeds a passive potency of a body in motion; 2) Whether a quality takes
degrees of more and less; 3) Whether a simple body can move equally fast in a plenum
and a vacuum; 4) Whether that which has changed in the moment when it has first
changed, is in that to which it has changed.
Richard Kilvington was born in the beginning of the fourteenth century in
the village of Kilvington in Yorkshire. He studied at Oxford, where he became
Master of Arts (1324/1325) and then Doctor of Theology (ca. 1335). His
academic career was followed by a diplomatic and ecclesiastical one. It culminated
in his service as Dean of St. Paul’s Cathedral in London. Along with
Richard Fitzralph, Kilvington was involved in the battle against mendicant
friars almost until his death in 1361. Except for a few sermons, all of Kilvington’s known works stem from his lectures at Oxford. His philosophical
works, the Sophismata and Quaestiones super De generatione et corruptione, both
composed before 1325, were the result of lectures given as a Bachelor of Arts;
his Quaestiones super Physicam (Questions on motion) composed in 1325/26 and
Quaestiones super Libros Ethicorum composed in 1326/1332 come from the period
he was a Master of Arts; finally, he composed eight questions on Peter
Lombard’s Sentences at the Faculty of Theology before 1335.
One of the most notable achievements of Kilvington’s theory is his awareness
of the different levels of abstraction involved in the problem he analyzes.
Although his account frequently proceeds secundum imaginationem in the direction
of “speculative physics”, it never renounces empirical verification.
Nevertheless, Kilvington ponders questions, which would never arise as
a result of direct observation, since the structure of nature can only be uncovered
by highly abstract analyses. Such abstractions, however, arise from
genuine realities and cannot contradict them. He sees physics and mathematics
as complementary, i.e., as two different ways of describing natural phenomena.
Reality provides the starting point for the more complicated mental
constructions, which in turn make it comprehensible. While mathematics is
the proper way to solve the problems, logic remains the most convenient way
to pose them. These different methods together guarantee the objective and
demonstrative character of the natural sciences. On the one hand, Kilvington
never abandons the realm of Aristotelian physics or rejects the principles laid
down in his natural philosophy. But on the other, his tendency to combine
mathematics and physics frequently led him beyond Aristotle’s theories to
seek solutions to many paradoxes which resulted from Aristotelian principles.
Kilvington pointed to two different conditions which have to be met:
one referring to the everyday use of language, which describes real, physical
phenomena; and another referring to the formal, i.e. logico-mathematical,
language that deals with the questions in the realm of speculative, i.e.,
mathematical, physics.
Like a great many Oxford thinkers of the period, Kilvington is convinced
that mathematics is useful in any branch of scientific inquiry that deals with
measurable subjects. He makes a broad use of the most popular fourteenthcentury
calculative techniques to solve not only physical but also ethical and
theological problems. Three types of calculations can be found in Kilvington’s
Quaestions on motion. The most predominant is the measure by limits,
i.e., by the first and last instants beginning and ending a continuous process,
and by the intrinsic and extrinsic limits of capacities of passive and active
potencies. The second type of calculation, by a latitude of forms, covers
processes in which accidental forms or qualities are intensified or diminished,
e.g., in the distribution of such natural qualities as heat or whiteness.
Finally, the third type of calculation is more properly mathematical and
employs a new calculus of compounding ratios in order to measure the
speed of local motion.
Although Kilvington subscribes to the general Aristotelian principles of
motion, he follows Ockham in accepting substance and quality as the only
two kinds of really existing things. Beyond doubt, Kilvington follows Ockham’s
understanding of the works of the Philosopher. He explains the reality
of motion in terms of the mobile subject and places, qualities, and quantities it
acquires successively. Consequently, Kilvington is mostly interested in
measuring local motion in terms of its actions or causes, the distance traversed
and time consumed, rather than in the “intensity” of its speed. It is his
analysis of local motion that places Kilvington among the 14th-century pioneers
who considered the problem of motion with respect to its cause (tamquam
penes causam), corresponding to modern dynamics, and with respect to
its effect (tamquam penes effectum), corresponding to modern kinematics.
In his first question, Kilvington, while debating the problem of setting
boundaries to capacities or potencies involved in active/passive processes,
presents many theories of his colleagues, as well as the Aristotelian and
Averroenian solutions of the problem. He articulates most of the issues,
which were at stake, and poses questions that influenced the solutions of later
Calculators. Kilvington’s most interesting and original idea in the theory of
motion concerns the new rule of motion, which relates forces, resistance and
speeds in motion and shows that the proper way of measuring the speed of
motion is to describe its variations by the double ratio of motive force (F) and
resistance (R). In order to produce a mathematically coherent theory, he insists
(in agreement with Euclid’s definition from the fifth book of the Elements)
that a proper double proportion is the multiplication of a proportion
by itself. Kilvington’s function makes it possible to avoid a serious weakness
of Aristotle’s theory, which cannot explain the mathematical relationship of
F and R in a motion with a speed of less than 1. Local motion considered in its
dynamic aspect, i.e., when speed is proportional to the ratios of Fs to Rs, describes
the changes of speed, i.e., the accelerate motion. Local motion considered
in its kinematic aspect describes the changes of speed with regard to time and traversed distance, and it describes both uniform and uniformly
difform motion. Like William of Ockham, Kilvington is convinced that a motion
is nothing else than an individual thing in motion. Therefore, speed has
to be measured by distances, i.e., latitude of a quality (formal distance) or
quantity traversed, and such traversals take time unless the speed is infinitely
great. In his questions he considers all sorts of motion, which can occur both
in a medium and in a void. Although he holds that the vacuum does not exist
in nature, he is nevertheless convinced, contrary to Aristotle, that neither
logic nor nature exclude a possible existence of a vacuum. Moreover, using
a new rule of motion it is possible to show that a motion in a vacuum would
be temporal for both mixed and simple bodies.
Ockham’s influence is also confirmed in Kilvington’s considerations of
qualitative changes, which was also one of the most frequently discussed
issues in the 14th century. Kilvington is convinced that two main Ockhamist
principles, namely particularist ontology and economy of thinking, suffice to
explain all qualitative changes, such becoming white or cold. Since a quality
is a real thing, it is enough to conclude that in the process of becoming hot
a body possesses the same quality, which changes from one extreme, i.e.,
coldness to the other, i.e., hotness. Such terms as the “latitude of a form”,
“degree of coldness” etc. are nothing else but sincategorematic terms, which
we use to describe qualitative changes. In reality, there are only substances
and qualities, the only existing permanent things, while the remaining eight
Aristotelian categories serve only to describe various aspects of an individual
thing in the outside reality.
Kilvington’s teaching on natural philosophy was influential both in England
and on the Continent. His Quaestiones de motu were well known to the
next generation of the Oxford Calculators and influenced also such prominent
Parisian masters as Nicole Oresme and John Buridan. It was Thomas
Bradwardine, however, who was the most renowned beneficiary of Kilvington’s
work, so much that until recently he was called the Founder of the Oxford
Calculators’ School,. The analysis of dispersal of new ideas of mathematical
physics point strongly at Kilvington as their primary source. In his
famous Treatise on proportions in motion (the best know medieval treatise presenting
a new rule of motion) Bradwardine incorporated almost one half of
Kilvington’s first and third questions on motion. Extolling of Bradwardine’s
treatise by his followers and modern historians of medieval science and swift
oblivion of Kilvington’s work were caused by the fact that Bradwardine treatise was a manual for students following the rules for this type of work, i.e.,
dividing material in chapters, which present general rules based on a theory
of proportion, while Kilvington’s questions are the result of his lecturing; one
can easily notice that some parts of them are students’ reportata, so their text is
difficult in reading.
In the present book I reiterate the opinion expressed in my previous book
that medieval science was a specific phenomenon of the medieval culture. It
can hardly be compared with modern science and its views of the world are
clearly incompatible with the modern ones. In its history, medieval science
took the Aristotelian course, thoroughly explored that framework exposing
its paradoxes and weakness and reached the point, where it was no longer
able to overcome the lingering doubt. Its story is finished, so each historian of
science is free to write his or her own tale about it. In my opinion, Richard
Kilvington, even though he abandoned Aristotle’s prohibition of metabasis,
which does not allow to use mathematics as a proper language for physics,
and invented a few new methods, still strove to overcome the difficulties and
the numerous aporiae of Aristotelian physics, showing how we should properly
understand the Philosopher. | pl_PL |
dc.language.iso | pl | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.rights | Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/pl/ | * |
dc.subject | Ryszard Kilvington | pl_PL |
dc.subject | Arystoteles | pl_PL |
dc.subject | Tomasz Bradwardine | pl_PL |
dc.subject | średniowiecze | pl_PL |
dc.subject | „Kwestie o ruchu” | pl_PL |
dc.title | Arystoteles na nowo odczytany. Ryszarda Kilvingtona „Kwestie o ruchu” | pl_PL |
dc.type | Book | pl_PL |
dc.rights.holder | © Copyright by Uniwersytet Łódzki, Łódź 2014 | pl_PL |
dc.page.number | 346 | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Łódzki, Wydział Filozoficzno-Historyczny Katedra Historii Filozofii, 90-232 Łódź, ul. Kopcińskiego 16/18 | pl_PL |
dc.references | Bruges, Stedelijke Openbare Bibl. 503. | pl_PL |
dc.references | Erfurt, Wissenschaftliche Allgemeinbibl. Amplon O. 74. | pl_PL |
dc.references | Erfurt, Wissenschaftliche Allgemeinbibl. Amplon O. 78. | pl_PL |
dc.references | Oxford, Bodleian Libr., Canon. Misc. 226. | pl_PL |
dc.references | Oxford, Peterhouse 279. | pl_PL |
dc.references | Paris, Bibl. Mazarine lat. 915. | pl_PL |
dc.references | Paris, BnF. lat. 6559. | pl_PL |
dc.references | Paris, BnF. 16401. | pl_PL |
dc.references | Prague, Bibl. Univ. III B. 10. | pl_PL |
dc.references | Seville, Bibli. Capit y Colombina 7-7-13. | pl_PL |
dc.references | Tortosa, Bibl. Catedral 186. | pl_PL |
dc.references | Trozes, Bibl. Mun. 1477. | pl_PL |
dc.references | Vatican, Ottob. lat. 179. | pl_PL |
dc.references | Vatican, Palat. lat. 1049. | pl_PL |
dc.references | Vatican, Vat. lat. 955. | pl_PL |
dc.references | Vatican, Vat. lat. 986. | pl_PL |
dc.references | Vatican, Vat. lat. 2148. | pl_PL |
dc.references | Vatican, Vat. Lat. 2225. | pl_PL |
dc.references | Vatican, Vat. lat. 4353. | pl_PL |
dc.references | Venise, Bibl. San Marco VI, 72 (2810). | pl_PL |
dc.references | Vienne, ONB. Palat. lat. 431. | pl_PL |
dc.references | Anonymous, Probationes conclusionum, [w:] Hentisberi de sensu composito et diviso, Regulae solvendi sophismata, Venetiis 1494. | pl_PL |
dc.references | Anonymous, Tractatus de sex inconvenientibus, Bonetus Locatellus, Venetiis 1505. | pl_PL |
dc.references | Averroes, Commentarium in De generatione et corruptione, [w:] Aristotelis opera cum Averrois commentariis, t. IX, Venetiis, apud Iunctas M.D.LXII. | pl_PL |
dc.references | Averroes, Commentarium in Metaphysicam, [w:] Aristotelis opera cum Averrois commentariis, t. VIII, Venetiis, apud Iunctas M.D.LXII. | pl_PL |
dc.references | Averroes, Commentarium in Physicam, [w:] Aristotelis opera cum Averrois commentariis, t. IV, Venetiis, apud Iunctas M.D.LXII. | pl_PL |
dc.references | Gaetano di Thiene, Recollecte super octo libros physicorum Aristotelis, Trevisio 1476. | pl_PL |
dc.references | Gaetano di Thiene, Recollecte super Regulas Hentisberi, [w:] Hentisberi de sensu composito et diviso, Regulae solvendi sophismata, Venetiis 1494. | pl_PL |
dc.references | Gualterus Burlaeus, In Physicam Aristotelis expositio et quaestiones, Venetiis 1501. | pl_PL |
dc.references | Gualteru Burleaus, Tractatus secundus de intensione et remisssione formarum accidentalium, Venice 1496. | pl_PL |
dc.references | Guilelmus Hentisberus, Regule solvendi sophismata, Venetiis 1494. | pl_PL |
dc.references | Johannes Buridanus, Quaestiones super octo Physicorum libros, Parisis 1500. | pl_PL |
dc.references | Iohannis Duns Scoti in octo libros physicorum quaestiones et expositio, Venetiis 1617. | pl_PL |
dc.references | Scriptorum illustrium maioris Britaniae, Basel 1557–1559. | pl_PL |
dc.references | Anonymous, Tractatus de maximo et minimo, [w:] J. Longeway, William Heytesbury on Maxima and Minima, Chapter 5 of “Rules for solving sophismata” with an anonymous fourteenth-century discussion, Dordrecht 1984. | pl_PL |
dc.references | Archimedes, On the Equilibrium of Planes, ed. M. Clagett, [w:] M. Clagett, The Science of Mechanics in the Middle Ages, Madison 1959. | pl_PL |
dc.references | Averroes Cordubensis commentum magnum super libro De celo et mundo Aristotelis, ed. by F.J. Carmody, R. Arnzen, Leuven 2003. | pl_PL |
dc.references | Averroes, Commentarium magnum in Aristotelis libros De anima, ed. by F.S. Crawford, Cambridge Mass. 1953. | pl_PL |
dc.references | Campanus de Novara, Elementa, [w:] Campanus of Novara and Euclid’s “Elements”, ed. by H.L.L. Busard, Franz Steiner Verlag 2005. | pl_PL |
dc.references | Euclides, Elementorum libri priores XII ex Commandini et grecorum versionibus latinis, ed. by S. Horsley, Oxford 1802. | pl_PL |
dc.references | Euclides, Liber de ponderoso et levi et de comparatione corporum ad invicem, ed. by M. Clagett, [w:] The Medieval Science of Weights (Scientia de ponderibus): Treatises Acribied Euclid, Archimedes, Thabit Ibn Qurra, Jordanus de Nemore, Blasius of Parma, ed. by E.A. Moody, M. Clagett, The University of Wisconsin Press, Wisconsin 1952. | pl_PL |
dc.references | Gualterus Burleus, Super Arystotelis libros de physica auscultatione...commentaria, Venice 1589. | pl_PL |
dc.references | Guillelmus Ockham, Opera philosophica et theologica, ed. by G. Gal, St. Brown et al., St. Bonaventura N.Y. 1967–1995. | pl_PL |
dc.references | In Arystotelis de caelo libros commentaria, hrsg. von J. L. Heiberg, [w:] Commentaria in Arystotelem graeca, vol. 7, Berlin 1894. | pl_PL |
dc.references | Johannes Buridanus, Expositio et Quaestiones in Aristotelis De Caelo, éd. B. Patar, Louvain–Paris 1996. | pl_PL |
dc.references | Johannes Buridanus, Quaestiones super libris quattuor „De celo et mundo”, ed. by E. Moody, London 1948. | pl_PL |
dc.references | Johannes Sacrobosco, Tractatus de sphera, [w:] L. Thorndike, The Sphere of Sacrobosco and Its Commentators, Chicago 1949. | pl_PL |
dc.references | Johannes de Tinemue’s redaction of Euclid’s Elements the so-called Adelard III version, introduction, sigla and descriptions by H.L.L. Busard, Stuttgart 2001. | pl_PL |
dc.references | Jordanus Nemorarius, Liber Jordani de Nemore “De ratione ponderis”, ed., with introduction, translation and notes by E. Moody, [w:] The Medieval Science of Weights (Scientia de ponderibus): Treatises Acribied Euclid, Archimedes, Thabit Ibn Qurra, Jordanus de Nemore, Blasius of Parma, ed. by E.A. Moody, M. Clagett, The University of Wisconsin Press, Wisconsin 1952. | pl_PL |
dc.references | Jordanus Nemorarius, De elementis Arithmetice Artis, ed. by H.L.L. Busard, [w:] H.L.L. Busard, Jordanus de Nemore, De elementis Arithmetice Artis. A Medieval Treatise on Number Theory, Stuttgart 1991. | pl_PL |
dc.references | Richardus Kilvington, Sophismata, ed. by B.E. Kretzmann, N. Kretzmann,[w:] The Sophismata of Richard Kilvington, Oxford 1991. | pl_PL |
dc.references | Ricardus Kilvington, Utrum continuum sit divisibile in infinitum, ed. by R. Podkoński, [w:] „Mediaevalia Philosophica Polonorum” 2007, XXXVI(II). | pl_PL |
dc.references | Robert Grosseteste, De calore solis, ed. by L. Baur, [w:] L. Baur, Die Philosophie des Robert Grosseteste, Bishofs von Lincoln, „Beitrage zur Geschichte der Philosophie des Mittelalter“, Bd 18, H. 4–6, Munster 1917. | pl_PL |
dc.references | Robert Grosseteste, De colore, [w:] The Dimensions of Colour Robert Grosseteste’s De colore, ed. by G. Dinkova-Bruun et al., Toronto 2013. | pl_PL |
dc.references | Robert of Chester’s (?) Redaction of Euclid’s Elements, the so-called Adelard II Version, ed. by H.L.L. Busard, M. Folkers, Basel–Boston–Berlin 1992. | pl_PL |
dc.references | Rogerus Baconus, Communia mathematica, ed. by R. Steele, Oxford 1940. | pl_PL |
dc.references | The First Latin Translation of Euclid’s Elements commonly ascribed to Adelard of Bath, ed. by H.L.L. Busard, Toronto 1983. | pl_PL |
dc.references | Thomas Bradwardine, Opus artis logicae, [w:] J. Pinborg, A Logical Treatise ascribed to Bradwardine, [w:] Studi sul XIV secolo in memoria di Anneliese Maier, a cura di A. Maieru, A. Paravicini Bagliani, Roma 1981. | pl_PL |
dc.references | Thomas Bradwardine, Tractatus proportionum seu de proportionibus velocitatum in motibus, [w:] H.L. Crosby Jr., Thomas of Bradwardin. His Tractatus de Proportionibus. Its Significance for the Developement of Mathematical Physics, The University of Wisconsin Press, Madison 1955. | pl_PL |
dc.references | Thomas Bradwardine, De incipit et desinit, [w:] L.O. Nielsen, Thomas Bradwardine’s „Treatise on ‘incipit’ and ‘desinit’”, „Cahiers de l’Institut du Moyen Age Grec et Latin” 1982. | pl_PL |
dc.references | Thomas de Aquino, Opera omnia, t. 1–15 (wydanie Leonińskie), Roma 1882 – . | pl_PL |
dc.references | Arystoteles, Analityki wtóre, tłum. K. Leśniak, [w:] Dzieła wszystkie, t. 1, Warszawa 1990. | pl_PL |
dc.references | Arystoteles, Fizyka, tłum. K. Leśniak, [w:] Dzieła wszystkie, t. 2, Warszawa 1990. | pl_PL |
dc.references | Arystoteles, Kategorie, tłum. K. Leśniak, [w:] Dzieła wszystkie, t. 1, Warszawa 1990. | pl_PL |
dc.references | Arystoteles, Metafizyka, tłum. K. Leśniak, [w:] Dzieła wszystkie, t. 2, Warszawa 1990. | pl_PL |
dc.references | Arystoteles, O świecie, tłum. A. Paciorek, [w:] Dzieła wszystkie, t. 2, Warszawa 1990. | pl_PL |
dc.references | Arystoteles, O niebie, tłum. P. Siwek, [w:] Dzieła wszystkie, t. 2, Warszawa 1990. | pl_PL |
dc.references | Arystoteles, O powstawaniu i niszczeniu, tłum. L. Regner, [w:] Dzieła wszystkie, t. 2, Warszawa 1990. | pl_PL |
dc.references | Jan Buridan, Dzięki czemu porusza się przedmiot rzucony, tłum. D. Gwis, M. Gensler, E. Jung[-Palczewska], [w:] Wszystko to ze zdziwienia. Antologia tekstów filozoficznych z XIV wieku, oprac. wstęp, wybór E. Jung[-Palczewska], Warszawa 2000. | pl_PL |
dc.references | Lukrecjusz Carus Titus, O naturze rzeczy, tłum. G. Żurek, Warszawa 1994. | pl_PL |
dc.references | Ricardus de Bury, Philobiblion, czyli O miłości ksiąg, tłum. J. Kasprowicz, Gdańsk 1992. | pl_PL |
dc.references | Robert Grosseteste, Wybór pism, [w:] M. Boczar, Grossteste, Warszawa 1994. | pl_PL |
dc.references | Walter Burley, O powiększaniu i zmniejszaniu się form przypadłościowych, tłum. D. Gwis, M. Gensler, E. Jung[-Palczewska], [w:], Wszystko to ze zdziwienia. Antologia tekstów filozoficznych z XIV wieku, oprac. wstęp, wybór E. Jung[-Palczewska], Warszawa 2000. | pl_PL |
dc.references | Wilhelm Heytesbury, O prawdzie i fałszu zdania, tłum. M. Gensler, D. Gwis, E. Jung[-Palczewska], [w:] Wszystko to ze zdziwienia. Antologia tekstów filozoficznych z XIV wieku, oprac. wstęp, wybór E. Jung[-Palczewska], Warszawa 2000. | pl_PL |
dc.references | Wilhelm Ockham, Suma logiczna, tłum. T. Włodarczyk, Warszawa 2010. | pl_PL |
dc.references | Wilhelm Ockham, O nauce w ogóle a nauce przyrodniczej w szczególności, tłum. M. Gensler, D. Gwis, E. Jung[-Palczewska], [w:] Wszystko to ze zdziwienia. Antologia tekstów filozoficznych z XIV wieku, oprac. wstęp, wybór E. Jung[-Palczewska], Warszawa 2000. | pl_PL |
dc.references | Adams McCord M., William Ockham, t. 1-2, Indianapolis 1987. | pl_PL |
dc.references | Aristotelismo veneto e scienza moderna, L. Olivieri (red.), t. 1–2, Padua 1983. | pl_PL |
dc.references | Articles on Aristotle, ed. by J. Barnes, M. Schofield, R. Sorabji, New York 1979. | pl_PL |
dc.references | Katz B.D., On a „Sophisma” of Richard Kilvington and a Problem of Analysis, „Medieval Philosophy and Theology” 1996, no. 5, s. 31–38. | pl_PL |
dc.references | Biard J., Logique et théorie du signe au XIV siècle, Paris 1989. | pl_PL |
dc.references | Boczar M., „Scientiae mediae” w ujęciu Roberta Grosseteste, „Kwartalnik Historii Nauki i Techniki” 1981, 26, nr 1, s. 23–39. | pl_PL |
dc.references | Boczar M., Grosseteste, Warszawa 1994. | pl_PL |
dc.references | Boehner Ph., Ockham Philosophical Writings (Introduction), Indianpolis 1990, s. IX–LV. | pl_PL |
dc.references | Bottin F., Analisi linguistica e fisica Aristotelica nei ‘Sophysmata’ di Ricard Kilmyngton, [w:] Filosofia e Politica, et altri sagii, ed. de C. Giacon, Padua 1973, s. 125–145. | pl_PL |
dc.references | Boyer C.B., A History of Mathematics, New York 1997. | pl_PL |
dc.references | Busard H.L.L, A Latin Translation of an Arabic Commentary on Book X of Euclid’e „Elements”, „Medieval Studies” 1997, no. 59, s. 19–110. | pl_PL |
dc.references | Busard H.L.L., Die Traktate „De proportionibus” von Jordanus Nemorarius und Campanus, „Centaurus”, 1970, vol. XV, s. 193–227. | pl_PL |
dc.references | Butterfield H., Rodowód współczesnej nauki 1300–1800, tłum. H. Krahelska, Warszawa 1963. | pl_PL |
dc.references | Calendar on Entries in the Papal Registers relating to Great Britain and Ireland, vol. 1–2, London 1895. | pl_PL |
dc.references | The Cambridge History of Later medieval Philosophy. From the Rediscovery of Aristotle to the Disintegration of Scholasticism 1100–1600, ed. by N. Kretzmann, A. Kenny, J. Pinborg, Cambridge 1982. | pl_PL |
dc.references | Caroti S., Da Walter Burley al „Tractatus sex inconvenientium”: La Tradizione Inglesse della Discussione Medievale „De reactione”, „Medioevo” 1995, vol. 22, s. 280–305. | pl_PL |
dc.references | Chambre W., Continuatio Historiae Dunelmensis, Newcastle 1839. | pl_PL |
dc.references | Clagett M., Archimedes in the Middle Ages, vol. 1-5, Madison 1964–1980. | pl_PL |
dc.references | Clagett M., Giovanni Marliani and the Late Medieval Physics, New York 1967. | pl_PL |
dc.references | Clagett M., Moody E.A., The Medieval Science of Weights, Madison 1952. | pl_PL |
dc.references | Clagett M., The Impact of Archimedes on Medieval Science, „Isis” 1959, vol. 50, s. 419–429. | pl_PL |
dc.references | Clagett M., The Medieval Latin Translation from the Arabic of the „Elements” of Euclid with Special Emphasis on the Version of Adelard of Bath, „Isis” 1953, vol. XLIV, s. 25–46. | pl_PL |
dc.references | Clagett M., The Science of Mechanics in the Middle Ages, Wisconsin 1959. | pl_PL |
dc.references | Cohen H., The Scientific Revolution. A Historiographical Inquiry, Chicago 1994. | pl_PL |
dc.references | Courtenay W.J., Force of Words and Figures of Speech: The Crisis over Virtus sermonis in the Fourteenth Century, „Franciscan Studies” 1984, vol. 22, s. 107–128. | pl_PL |
dc.references | Courtenay W.J., Schools and Scholars in Fourteenth-Century England, Princeton 1987. | pl_PL |
dc.references | Courtenay W.J., The Involvement of Logic in Late Medieval Natural Philosophy, [w:] Studies in Medieval Natural Philosophy, ed. by S. Caroti, Firenze 1989, s. 3 23. | pl_PL |
dc.references | Courtenay W.J., The Role of English Thought in the Transformation of University Education in the Late Middle Ages, [w], Rebirth, Reform, and Resilence. Universities in Transition 1300–1700, ed. by J.M. Kittelson, P.J. Transue, Columbus Ohio 1984, s. 103–162. | pl_PL |
dc.references | Courtenay W.J., Theology and Theologians from Ockham to Wyclif, [w: ], The History of the University of Oxford, vol. 1: The early Oxford Schools, ed. by J.I. Catto, Oxford 1984; vol. 2: Late Medieval Oxford, ed. by J.I. Catto, R. Evans, Oxford 1992. s. 46–47. | pl_PL |
dc.references | Crombie A., Medieval and Early Modern Science, Oxford 1959. | pl_PL |
dc.references | Crombie A., Nauka średniowieczna i początki nauki nowożytnej, tłum. S. Łypaczewski, t. 1–2, Warszawa 1960. | pl_PL |
dc.references | The Critical Problems in the History of Science, ed. by M. Clagett, Madison 1959. | pl_PL |
dc.references | Crombie A., The Significance of Medieval Discussions of Scientific Revolution, [w:], The Critical Problems in the History of Science, ed. by M. Clagett, Madison wisc. 1959, s. 79–101. | pl_PL |
dc.references | Crosby H.L.Jr., Thomas Bradwardine: His Tractatus de Proportionibus. Its Significance for Development of Mathematical Physics, Madison 1955. | pl_PL |
dc.references | The Cultural Context of Medieval Learning, ed. by J.E. Murdoch, E.D. Sylla, Dordrecht 1975. | pl_PL |
dc.references | Davis J., Ockham’s on Aristotle’s „Physics”, St. Bonaventure, New York 1989. | pl_PL |
dc.references | Die Philosophie im 14 und 15 Jahrhundert. In memoriam Konstanty Michalski (1879–1947), hrsg. von O. Pluta, Amsterdam 1988. | pl_PL |
dc.references | Divine Omniscience and Omnipotence in Medieval Philosophy. Islamic, Jewish and Christian Perspectives, ed. by T. Rudavsky, Utrecht 1985. | pl_PL |
dc.references | Dolnikowski E., Thomas Bradwardine. A View of Time and a Vision of Eternity in Fourteenth-Century Thought, Leiden 1995. | pl_PL |
dc.references | Drake S., Uniform Acceleration, Space and Time, „British Journal for the History of Science” 1970, vol. 5, no. 1, s. 36–43. | pl_PL |
dc.references | Duhem P., Etudes sûr Leonardo de Vinci, vol. 1–3, Paris 1906–1913. | pl_PL |
dc.references | Duhem P., Le système du monde, t. 1–10, Paris 1906–1959. | pl_PL |
dc.references | Emden A.B., A Biographical Register of the University of Oxford to a.d. 1500, vol. 1–2, Clarendon 1957–1959. | pl_PL |
dc.references | Essays in Honor of Jaakko Hintikka, ed. by E. Saarinen et al., Dordrecht 1979. | pl_PL |
dc.references | Filosofia e scienze nella tarda scolastica: Studi sul XIV secolo in memoria di Annelise Maier, ed. de A. Maierú, A. Paravicini Bagliani, Roma 1981. | pl_PL |
dc.references | Fletcher J. M., The Faculty of Art, [w:] The History of the University of Oxford, vol. 1: The early Oxford Schools, ed. by J. I. Catto, Oxford 1992. | pl_PL |
dc.references | From Ockham to Wyclif, ed. by A. Hudson, M. Wilks, Oxford 1987. | pl_PL |
dc.references | Funkenstein A., Theology and the Scientific Imagination from the Middle Ages to the Seventeenth Century, Princeton 1986. | pl_PL |
dc.references | Gensler M., Kłopotliwa zmiana czyli Waltera Burleya zmagania ze zmiennością rzeczy, Łódź 2007. | pl_PL |
dc.references | Gilbert N., Richard de Bury and the „Quires of Yesterday Sophims”, [w:] Philosophy and Humanism Renaissance. Essays in honor of. P. O. Kristeller, ed. by E. Mahoney, Columbia 1976, s. 229–257. | pl_PL |
dc.references | Goddu A., The physics of William of Ockham, Leiden 1984. | pl_PL |
dc.references | Goff le J., Inteligencja w wiekach średnich, przeł. E. Bąkowska, Warszawa 1997. | pl_PL |
dc.references | Grant E., Bradwardine and Galileo Equality of Velocities in the Void, „Archives for History of Exact Sciences” 1964, vol. 2, no. 3, s. 345–364. | pl_PL |
dc.references | Grant E., Late Medieval Thought, Copernicus, and the Scientific Revolution, „Journal of the History of Ideas” 1962, vol. 23, s. 197–220. | pl_PL |
dc.references | Grant E., Medieval and seventeenth-Century Conceptions of an Infinite Void Space beyond the Cosmos, „Isis” 1969, vol. 60, s. 39–60. | pl_PL |
dc.references | Grant E., Motion in a Void and the Principle of Inertia in the Middle Ages, „Isis” 1964, vol. 55, s. 265–292. | pl_PL |
dc.references | Grant E., Much Ado About Nothing. Theories of Space and Vacuum from the Middle Ages to the Scientific Revolution, Cambridge University Press 1981. | pl_PL |
dc.references | Grant E., Studies in Medieval Science and Natural Philosophy. Collected papers, London 1981. | pl_PL |
dc.references | Grobler A., Problem redukcji a teza o niewspółmierności w teoriach naukowych, Wrocław 1986. | pl_PL |
dc.references | Gwynn A., Archbishop FitzRalph and the Friars, „Studies” 1937, vol. 26, s. 50–67. | pl_PL |
dc.references | Gwynn A., The Sermon-Diary of Richard FitzRalph, Archbishop of Armagh, „Proceedings of the Royal Irish Academy” 1937, vol. 44, no. 1, s. 1–57. | pl_PL |
dc.references | Hall A.R., Rewolucja naukowa 1500–1800. Kształtowanie się nowożytnej postawy naukowej, tłum. T. Zembrzuski, Warszawa 1996. | pl_PL |
dc.references | Hamesse J., Auctoritates Aristotelis, Senecae, Boethii, Platonis, Apulei et quorundam aliorum, Louvain 1972. | pl_PL |
dc.references | Heuser W., With an O and an I, „Anglia” 1904, vol. 27, s. 314–319. | pl_PL |
dc.references | The History of the University of Oxford, vol. 1: The early Oxford Schools, ed. by J.I. Catto, Oxford 1984; vol. 2: Late Medieval Oxford, ed. by J.I. Catto, R. Evans, Oxford 1992. | pl_PL |
dc.references | Hugonnard-Roche H., Analyse sémantique et analyse secundum imaginationem dans la physique Parisienne au XIV siecle, [w:] Studies in Medieval Natural Philosophy, ed. by S. Caroti, Firenze 1989, s. 133–153. | pl_PL |
dc.references | Infinity and Continuity in Ancient and Medieval Thought, ed. by N. Kretzmann, Ithaca, New York 1982. | pl_PL |
dc.references | Jung E, Podkoński R., The Transmission of English Ideas in the Fourteenth Century—the Case of Richard Kilvington, „Mediaevalia Philosophica Polonorum” 2009, nr 37 (3), s. 59–69;. | pl_PL |
dc.references | Jung E., „Richard Kilvington”, [w:] The Stanford Encyclopedia of Philosophy (Fall 2011 Edition), ed. by Edward N. Zalta, dostęp elektroniczny: http://plato.stanford.edu/archives/fall2011/entries/kilvington/. | pl_PL |
dc.references | Jung E., Michałowska M., Jak być sprawiedliwym? Ryszarda Kilvingtona komentarz do Etyki Arystotelesa, „Roczniki Filozoficzne” 2008, nr 56 (2), s. 117–129. | pl_PL |
dc.references | Jung E., Michałowska M., Scotistic and Ockhamist Contribution to Kilvington’s Ethical and Theological Views, [w:] 1308 Ein Topographie historischaer Gleichzeitigkeit, Berlin–New York 2010, s. 104–125. | pl_PL |
dc.references | Jung E., Physical Forms and Matter, [w:] A Companion to Walter Burley. Late Medieval Logician and Metaphysocian, ed. by A. Conti, Leiden–Boston 2013, 247–266. | pl_PL |
dc.references | Jung E., Podkoński R., Richard Kilvington on continuity, [w:] Atomism in Late Medieval Philosophy and Theology, ed. by C. Grellard, A. Robert, Leiden–Boston 2009, s. 65–84. | pl_PL |
dc.references | Jung E., Why was Mediewal Science Doomed?, „Herbst de Mittelalters”? Fraget zur Bewertung des 14. und 15. Jahnhunderts, Berlin–New York 2004, s. 395–511. | pl_PL |
dc.references | Jung[-Palczewska] E., Procedura secundum imaginationem w czternastowiecznej filozofii przyrody, [w:] Księga pamiątkowa ku czci profesora Zdzisława Kuksewicza, pod red. E. Jung[-Palczewskiej], Łódź 2000, s. 57–79. | pl_PL |
dc.references | Jung[-Palczewska] E., Filozofia XIV wieku, [w:] Wszystko to ze zdziwienia. Antologia tekstów filozoficznych z XIV wieku, oprac. wstęp, wybór E. Jung[-Palczewska], Warszawa 2000, s. XIII–XLVII. | pl_PL |
dc.references | Jung[-Palczewska] E., From Oxonian Sources to Parisian Rebellion: Attempts to Overcome Aristotelianism in Fourteenth-Century Physics, [w:] Bilan et perspectives des etudes medievales (1993–1998), Brepols Publishers 2004, s. 429–435. | pl_PL |
dc.references | Jung[-Palczewska] E., Między filozofią przyrody a nowożytnym przyrodoznawstwem. Ryszard Kilvington i fizyka matematyczna w średniowieczu, Łódź, 2002. | pl_PL |
dc.references | Jung[-Palczewska] E., Motion in a Vacuum and in a Plenum in Richard Kilvington’s Question Utrum aliquod corpus simplex posset moveri aeque velociter in vacuo et in pleno from the “Commentary on the Physics”, „Miscellanea Mediaevalia” 1998, nr 25, s. 179–193. | pl_PL |
dc.references | Jung[-Palczewska] E., Natura more geometrico: Średniowiecze jako pośrednik w recepcji matematyki greckiej dla potrzeb fizyki, „Studia Warmińskie” 2000, nr XXVI, s. 129–139. | pl_PL |
dc.references | Jung[-Palczewska] E., The Concept of Time in Richard Kilvington, [w:] Tempus, Aevum, Eternity. La Conzettualizzazione del tempo nel Pensiero Tardomiedievale, ed. de L. Cova and G. Alliney, Firenze: Leo S. Olschki, 2000, s. 141–167. | pl_PL |
dc.references | Jung[-Palczewska] E., Walter Burley, [w:] Wszystko to ze zdziwienia. Antologia tekstów filozoficznych z XIV wieku, oprac. wstęp, wybór E. Jung[-Palczewska], Warszawa 2000, s. 123–127. | pl_PL |
dc.references | Jung[-Palczewska] E., Wilhelm Heytesbury, [w:] Wszystko to ze zdziwienia. Antologia tekstów filozoficznych z XIV wieku, oprac. wstęp, wybór E. Jung[-Palczewska], Warszawa 2000, s. 319–322. | pl_PL |
dc.references | Jung[-Palczewska] E., Wilhelm Ockham, [w:] Wszystko to ze zdziwienia. Antologia tekstów filozoficznych z XIV wieku, oprac. wstęp, wybór E. Jung[-Palczewska], Warszawa 2000, s. 197–201. | pl_PL |
dc.references | Jung[-Palczewska] E., Works by Richard Kilvington, „Archives d’Histoire Doctrinale et Litteraire du Moyen Age”, 2000, vol. 67, s. 184–225. | pl_PL |
dc.references | Kamiński S., Ockhama koncepcja wiedzy przyrodniczej, „Roczniki Filozoficzne” 1968, r. XVI, nr 1, s. 113–123. | pl_PL |
dc.references | Kline M., Mathematical Thought from Ancient to Modern Times, Oxford 1972. | pl_PL |
dc.references | Knorr W.R., Archimedes and the Pre-Euclidean Proportion Theory, „Archives International d’Histoire des Sciences” 1978, vol. 28, no. 103, s. 183–223. | pl_PL |
dc.references | Krauze-Błachowicz K., Filozofia XIII wieku, [w:] Wszystko to ze zdziwienia. Antologia tekstów filozoficznych z XIII wieku, oprac. wstęp, wybór K. Krauze-Błachowicz, Warszawa 2002, s. XIII–LX. | pl_PL |
dc.references | Kuhn T., Dwa bieguny, tłum. S. Amsterdamski, Warszawa 1985. | pl_PL |
dc.references | Kuhn T., Przewrót Kopernikański, tłum. S. Amsterdamski, Warszawa 1965. | pl_PL |
dc.references | Kuhn T., Struktura rewolucji naukowych, tłum. H. Ostromęcka, Warszawa 1968. | pl_PL |
dc.references | Kuhn T., Theory Change as Strukture-Change: Comments on the Sneed Formalism, „Erkenntnis” 1976, no. 10, s. 300–310. | pl_PL |
dc.references | La nouvelle physique du XIVe siécle, ed. par S. Caroti, P. Soufrin, Firenze 1997. | pl_PL |
dc.references | Lang H.S., Aristotle’s „Physics” and Its Medieval Varieties, New York, 1992. | pl_PL |
dc.references | Laughlin Mc M., William of Ockham. The Metamorphosis of Scholastic Discourse, Manchester 1975. | pl_PL |
dc.references | Lewis C., The Merton Tradition and Kinematics in Late Sixteenth and Early Sevententh Century Italy, Padova 1980. | pl_PL |
dc.references | Lindberg D., On the Applicability of Mathematics to Nature: Roger Bacon and His Predecessors, „British Journal for the History of Science” 1982, vol. 15, s. 3–25. | pl_PL |
dc.references | Lindberg D., Theories of Vision from Al-Kindi to Kepler, Chicago 1976. | pl_PL |
dc.references | Livesey S.J., The Oxford Calculatores, Quantification of Qualities and Aristotle’s Prohibision of Metabasis, „Vivarium” 1986, vol. XXIV, no. 1, s. 50–69. | pl_PL |
dc.references | Logique, theologie au XIVe siecle. Preuve et Raison a l’Universite de Paris, ed. par Z. Kaluza, P. Vignaux, Paris 1984. | pl_PL |
dc.references | Lohr Ch.H., Medieval Latin Aristotle Commentaries, „Traditio” 1972, vol. 8. | pl_PL |
dc.references | Longeway J., Wiliam Heytesbury on Maxima and Minima. Chapter 5 of ‘Rules for solving sophismata’ with an anonymous fourteenth-century discussion, Dordrecht 1984. | pl_PL |
dc.references | Maier A., An der Grenze von Scholastik und Naturwissenschaft, [w:] Studien zur Naturphilosophie der Spatscholastik (Edizioni di Storia e Letteratura, t. 3), Roma 1952. | pl_PL |
dc.references | Maier A., Ausgehendes Mittelalters, Rome 1964. | pl_PL |
dc.references | Maier A., Zwei Grudprobleme der Scholastichen Naturphilosophie, [w:] Studien zur Naturphilosophie der Spatscholastik (Edizioni di Storia e Letteratura, t. 2), Roma 1951. | pl_PL |
dc.references | Maier A., Zwischen Philosophie und Mechanik, Roma 1958. | pl_PL |
dc.references | Mathematics and its applications to science and natural philosophy in the Middle Ages, ed. by E. Grant, J. Murdoch, Cambridge 1987. | pl_PL |
dc.references | Meaning and Inference in Medieval Philosophy, ed. by N. Kretzmann, Dordrecht 1988. | pl_PL |
dc.references | Medieval concept of the latitude of forms. The Oxford Calculators, „Archives d’Histoire Doctrinale et Litteraire du Moyen Age” 1974, vol. 40, s. 223–283. | pl_PL |
dc.references | Medieval Philosophy, ed. by J. Marenbon, [w:] The Routledge History of Philosophy, vol. 3, London 1998. | pl_PL |
dc.references | Michalski K., La physique nouvelle et les différents courants philosophiques au XIV s., „Bulletin International de l’Académie Polonaise des Sciences et de Lettres, Classe d’Histoire et de la philosophie” 1927, nr 7–10, Cracoviae 1928, s. 93–164. | pl_PL |
dc.references | Michalski K., Odrodzenie nominalizmu w XIV wieku, „Kwartalnik Filozoficzny” 1926, r. *-4, z. 2, s. 171–216, z. 4, s. 477–496. | pl_PL |
dc.references | Molland G., Mathematics and the Medieval Ancestry of Physics. Collected papers, London 1995. | pl_PL |
dc.references | Molland G., The Geometrical Background to the „Merton School”, „British Journal for the History of Science” 1968, vol. 4, s. 108–125. | pl_PL |
dc.references | Moody E., Studies in Medieval Philosophy, Science, and Logic. Collected Papers, 1933–1969, Berkeley 1975. | pl_PL |
dc.references | Motion and Time, Space and matter, ed. by P. Machamer, R. Turnbull, Cleveland–Ohio 1976. | pl_PL |
dc.references | Murdoch J., The Medieval and Renaissance Tradition of Minima Naturalia, [w:] Late Medieval and Early Modern Corpuscular Matter Theories, ed. by Ch. Luthy, J.E. Murdoch, W.R. Newman, Leiden–Boston–Koeln 2001. | pl_PL |
dc.references | Murdoch J.E., Euclides Graeco-Latinus. A Hithero Unknown Medieval Latin Translation of the „Elements” Made Directly from the Greek, „Harvard Studies in Classical Philology” 1967, vol. 71, s. 269–187. | pl_PL |
dc.references | Murdoch J.E., Infinite Times and Spaces in the Later Middle Ages, „Miscellanea Mediaevalia” 1998, nr 25, s. 194–205. | pl_PL |
dc.references | Murdoch J.E., Mathesis in Philosophiam Scholasticam Introducta: The Rise and Developement of the Application of Mathematics in Fourteenth-Century Philosophy and Theology, [w:] Arts liberaux et philosophie au moyen âge. Actes du quatrième congres international de philosophie médiévale, Montrèal 1969, s. 215–254. | pl_PL |
dc.references | Murdoch J.E., Philosophy and the Enterprise of Science in the Lates Middle Ages, [w:] The Interaction between Science and Philosophy, ed. by Y. Elkana, Atlantic Highlands, New York 1974, s. 51–74. | pl_PL |
dc.references | Murdoch J.E., The Analytical Character of Late Medieval Learning: Natural Philosophy without Nature, [w:] Approaches to Nature in the Middle Ages, ed. by L.D. Roberts, Binghamton, New York 1982, s. 171–213. | pl_PL |
dc.references | Murdoch J.E., The Medieval Euclid: Salient Aspects of the Translations of the „Element” by Adelard of Bath and Campanus of Novara, „Revue de Synthese” 1968, vol. 49, s. 67–94. | pl_PL |
dc.references | Kretzmann N., Kretzmann B.E., The „Sophismata” of Richard Kilvington (Introduction), Oxford 1991. | pl_PL |
dc.references | North W., The Fourteenth Century, [w: ] The History of Medieval Philosophy, ed. by J.I. Catto, Cambridge 1992, s. 72–102. | pl_PL |
dc.references | Panussio C., Les mots, les concepts et les choses, Paris 1991. | pl_PL |
dc.references | Plooij E.B., Euclid’s Conception of Ratio and His definition of Proportional Magnitudes as Citized by Arabian Commentators, Rotterdam 1950. | pl_PL |
dc.references | Rebirth, reform and Resilence. Universities in Transition 1300–1700, ed. by J.M. Kittelson, P.J. Transue, Columbus, Ohio 1984. | pl_PL |
dc.references | Rigg A.G., Two Latin Poems against the Friars, „Medieval Studies” 1968, vol. 30, s. 107–120. | pl_PL |
dc.references | Sarnowsky J., The Oxford Calculatores, [w:] Contemporary philosophy. A new survey, vol. 1, Amsterdam 1990, s. 473–480. | pl_PL |
dc.references | Science in the Middle Ages, ed. by D. Lindberg, Chicago 1978. | pl_PL |
dc.references | Scientific Change, ed. by A.C. Crombie, London 1963. | pl_PL |
dc.references | Serene E.F., Robert Grosseteste on Induction and Demonstrative Science, „Synthese” 1979, vol. 40, s. 95–115. | pl_PL |
dc.references | Spade P.V. The Cambridge Companion to Ockham, Cambridge 1999. | pl_PL |
dc.references | Studies in Medieval Natural Philosophy, ed. by S. Caroti, Firenze 1989. | pl_PL |
dc.references | Stump E., Obligations: from the Beginning to the Early Fourteenth Century, [w:] The Cambridge History of Later Medieval Philosophy. From the Rediscovery of Aristotle to the Desintegration of Scholasticism, ed. by N. Kretzmann, A. Kenny, J. Pinborg, Cambridge 1982, s. 239–332.. | pl_PL |
dc.references | Sylla E.D., Walter Burley’s „Tractatus primus”: Evidence Concerning the Relations of Disputations and Written Works, „Franciscan Studies” 1984, vol. 22, s. 257–273. | pl_PL |
dc.references | Sylla E.D., Aristotelian Commentaries and Scientific Channge: The Parisian Nominalism on the Cause of the Natural Motion of Inanimate Bodies, „Vivarium” 1993, vol. XXXI, s. 37–83. | pl_PL |
dc.references | Sylla E.D., Medieval Quantifications of Qualities: The ‘Merton School’. „Archives for History of Exact Sciences” 1971, vol. 8, s. 7–39. | pl_PL |
dc.references | Sylla E.D., The Oxford Calculators and the Mathematics of Motion 1320 – 1350. Physics and Measurement by Latitudes, New York 1991. | pl_PL |
dc.references | Sylla E.D., Transmission of the New Physics of the Fourteenth century from England to the Continent, [w:], La nouvelle Physique de XIVe siècle ed. by S. Caroti, P. Soufrin, Frenze 1997, s. 65–110. | pl_PL |
dc.references | Sylla E.D., Walter Burley, [w:] Routledge Encyclopedia for Philosophy, vol. 1, London 1999, s. 887–893. | pl_PL |
dc.references | Szabo A., The Beginnings of Greek Mathematics, Budapest 1978. | pl_PL |
dc.references | Tempus, Aevum, Aeternitas. La concettualizzazione del tempo nel pensiero tardomedievale, ed. de L. Cova. G. Alliney, Firenze 2000. | pl_PL |
dc.references | Text and Contexts in Ancient and Medieval Science. Studies on the Occasion of John E. Murdoch’s seventieth Birthday, ed. by E.D. Sylla, M. McVaugh, Leiden 1997. | pl_PL |
dc.references | Thorndike L., History of Magic and Experimental Science, vol. 1–3, New York 1923–1934. | pl_PL |
dc.references | Transformation and Tradition in the Sciences. Essays in honor of I. Bernard Cohen, ed. by E. Mendelson, Cambridge 1984. | pl_PL |
dc.references | Walsh K., A Fourteenth-Century Scholar and Primate Richard FitzRalph in Oxford, Avignon and Armagh, Oxford 1981. | pl_PL |
dc.references | Weisheipl J.A., Curriculum of the Faculty of Arts at Oxford in the Early Fourteenth Century, „Medieval Studies” 1964, vol. 26, s. 143–185. | pl_PL |
dc.references | Weisheipl J.A., Developments in the Arts Curriculum at Oxford in the Early Fourteenth Century, „Medieval Studies” 1966, vol. 28, s. 151–175. | pl_PL |
dc.references | Weisheipl J.A., Ockham and some Mertonians, „Medieval Studies” 1968, vol. 30, s. 163–213. | pl_PL |
dc.references | Weisheipl J.A., Ockham and the Mertonians, [w:] The History of the University of Oxford, ed. by T.H. Aston, Oxford 1984, s. 608–658. | pl_PL |
dc.references | Weisheipl J.A., Repretorium Mertonense, „Medieval Studies” 1969, vol. 31, s. 174–224 | pl_PL |
dc.references | Weisheipl J.A., The Concept of Scientific Knowledge in Greek Philosohy, [w:] Mélanges a’ la mémoire de Charles de Koninck, Quebec 1968, s. 487–507. | pl_PL |
dc.references | Weisheipl J.A., The Development of Physical Theory in the Middle Ages, London 1959. | pl_PL |
dc.references | Whitehead A.N., Nauka i świat nowożytny, tłum. M. Kozłowski, M. Pieńkowski, Kraków 1987. | pl_PL |
dc.references | Wilson C., William Heytesbury. Medieval Logic and the Rise of Mathematical Physics, Madison 1960. | pl_PL |
dc.references | Wszystko to ze zdziwienia. Antologia tekstów filozoficznych z XIII wieku, wstęp, wybór oprac. K. Krauze-Błachowicz, Warszawa 2002. | pl_PL |
dc.references | Wszystko to ze zdziwienia. Antologia tekstów filozoficznych z XIV wieku, wstęp, wybór, oprac. E. Jung[-Palczewska], Warszawa 2000. | pl_PL |
dc.identifier.doi | 10.18778/7969-384-9 | |