Pokaż uproszczony rekord

dc.contributor.authorJung, Elżbieta
dc.date.accessioned2017-11-17T17:55:52Z
dc.date.available2017-11-17T17:55:52Z
dc.date.issued2014
dc.identifier.citationJung E., Arystoteles na nowo odczytany. Ryszarda Kilvingtona „Kwestie o ruchu”, Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2014, doi: 10.18778/7969-384-9pl_PL
dc.identifier.isbn978-83-7969-384-9
dc.identifier.urihttp://hdl.handle.net/11089/23302
dc.descriptionPrezentowana książka jest efektem wieloletnich badań dotyczących wyjątkowego okresu w historii nauki średniowiecznej, mianowicie początków fizyki matematycznej. Składają się na nią dwie części: monografia, w której autorka odpowiada na pytanie, czy czternastowieczna fizyka matematyczna, inspirowana nominalistyczną filozofią Wilhelma Ockhama, doprowadziła do zerwania z jakościową fizyką Arystotelesa już w wieku czternastym, oraz tłumaczenie „Kwestii o ruchu” Ryszarda Kilvingtona -jednego z twórców szkoły Oksfordzkich Kalkulatorów. W swoich kwestiach Kilvington podejmuje analizę zagadnienia zmian, rozumianych, zgodnie z definicją Arystotelesa, jako ruch przestrzenny, zmiany jakościowe oraz ilościowe w ujęciu nominalistycznym, czyniąc matematykę właściwym językiem opisu przyrody. Jakiego rodzaju są te „obliczenia" i jakie dzięki nim osiągamy rezultaty, Czytelnik dowie się z lektury obydwu części tej książki.pl_PL
dc.description.abstractThe impulse to this book was a question that I was asked after my talk on God and science in the Middle Ages, whether I was able to give a positive answer to the problem, which I had signalled in my previous book Między filozofią przyrody a nowożytnym przyrodoznastwem. Ryszard Kilvington i fizyka matematyczna w średniowieczu, namely that I did not know what medieval science had been and what respect it had to the modern science. I have decided that the best way to answer that question is to show the readers on the example of one of the medieval texts dealing with physics and, more specifically, one of the fourteenth century commentaries to Aristotle’s Physics. My choice, with regard to my long standing interest in Richard Kilvington, was obvious. I decided to present a Polish translation of his Question on motion along with a monograph. The main purpose of this study is to verify, through detailed analyses, the commonly accepted view about the revolutionary character of the new theory of motion invented and developed by the members of the so-called school of Oxford Calculators, which was founded by Richard Kilvington and Thomas Bradwardine. The book consists of two parts. The first one presents results of research concerning Richard Kilvington’s biography and dating of his works, a description of his four questions on motion, methods he used in philosophy of nature, and his theories set against the background of two famous fourteenth century thinkers: William of Ockham and Thomas Bradwardine. The second part presents a Polish translation of Kilvington’s four questions – a result of his lectures on Aristotle’s Physics. These questions are: 1) Whether an active potency exceeds a passive potency of a body in motion; 2) Whether a quality takes degrees of more and less; 3) Whether a simple body can move equally fast in a plenum and a vacuum; 4) Whether that which has changed in the moment when it has first changed, is in that to which it has changed. Richard Kilvington was born in the beginning of the fourteenth century in the village of Kilvington in Yorkshire. He studied at Oxford, where he became Master of Arts (1324/1325) and then Doctor of Theology (ca. 1335). His academic career was followed by a diplomatic and ecclesiastical one. It culminated in his service as Dean of St. Paul’s Cathedral in London. Along with Richard Fitzralph, Kilvington was involved in the battle against mendicant friars almost until his death in 1361. Except for a few sermons, all of Kilvington’s known works stem from his lectures at Oxford. His philosophical works, the Sophismata and Quaestiones super De generatione et corruptione, both composed before 1325, were the result of lectures given as a Bachelor of Arts; his Quaestiones super Physicam (Questions on motion) composed in 1325/26 and Quaestiones super Libros Ethicorum composed in 1326/1332 come from the period he was a Master of Arts; finally, he composed eight questions on Peter Lombard’s Sentences at the Faculty of Theology before 1335. One of the most notable achievements of Kilvington’s theory is his awareness of the different levels of abstraction involved in the problem he analyzes. Although his account frequently proceeds secundum imaginationem in the direction of “speculative physics”, it never renounces empirical verification. Nevertheless, Kilvington ponders questions, which would never arise as a result of direct observation, since the structure of nature can only be uncovered by highly abstract analyses. Such abstractions, however, arise from genuine realities and cannot contradict them. He sees physics and mathematics as complementary, i.e., as two different ways of describing natural phenomena. Reality provides the starting point for the more complicated mental constructions, which in turn make it comprehensible. While mathematics is the proper way to solve the problems, logic remains the most convenient way to pose them. These different methods together guarantee the objective and demonstrative character of the natural sciences. On the one hand, Kilvington never abandons the realm of Aristotelian physics or rejects the principles laid down in his natural philosophy. But on the other, his tendency to combine mathematics and physics frequently led him beyond Aristotle’s theories to seek solutions to many paradoxes which resulted from Aristotelian principles. Kilvington pointed to two different conditions which have to be met: one referring to the everyday use of language, which describes real, physical phenomena; and another referring to the formal, i.e. logico-mathematical, language that deals with the questions in the realm of speculative, i.e., mathematical, physics. Like a great many Oxford thinkers of the period, Kilvington is convinced that mathematics is useful in any branch of scientific inquiry that deals with measurable subjects. He makes a broad use of the most popular fourteenthcentury calculative techniques to solve not only physical but also ethical and theological problems. Three types of calculations can be found in Kilvington’s Quaestions on motion. The most predominant is the measure by limits, i.e., by the first and last instants beginning and ending a continuous process, and by the intrinsic and extrinsic limits of capacities of passive and active potencies. The second type of calculation, by a latitude of forms, covers processes in which accidental forms or qualities are intensified or diminished, e.g., in the distribution of such natural qualities as heat or whiteness. Finally, the third type of calculation is more properly mathematical and employs a new calculus of compounding ratios in order to measure the speed of local motion. Although Kilvington subscribes to the general Aristotelian principles of motion, he follows Ockham in accepting substance and quality as the only two kinds of really existing things. Beyond doubt, Kilvington follows Ockham’s understanding of the works of the Philosopher. He explains the reality of motion in terms of the mobile subject and places, qualities, and quantities it acquires successively. Consequently, Kilvington is mostly interested in measuring local motion in terms of its actions or causes, the distance traversed and time consumed, rather than in the “intensity” of its speed. It is his analysis of local motion that places Kilvington among the 14th-century pioneers who considered the problem of motion with respect to its cause (tamquam penes causam), corresponding to modern dynamics, and with respect to its effect (tamquam penes effectum), corresponding to modern kinematics. In his first question, Kilvington, while debating the problem of setting boundaries to capacities or potencies involved in active/passive processes, presents many theories of his colleagues, as well as the Aristotelian and Averroenian solutions of the problem. He articulates most of the issues, which were at stake, and poses questions that influenced the solutions of later Calculators. Kilvington’s most interesting and original idea in the theory of motion concerns the new rule of motion, which relates forces, resistance and speeds in motion and shows that the proper way of measuring the speed of motion is to describe its variations by the double ratio of motive force (F) and resistance (R). In order to produce a mathematically coherent theory, he insists (in agreement with Euclid’s definition from the fifth book of the Elements) that a proper double proportion is the multiplication of a proportion by itself. Kilvington’s function makes it possible to avoid a serious weakness of Aristotle’s theory, which cannot explain the mathematical relationship of F and R in a motion with a speed of less than 1. Local motion considered in its dynamic aspect, i.e., when speed is proportional to the ratios of Fs to Rs, describes the changes of speed, i.e., the accelerate motion. Local motion considered in its kinematic aspect describes the changes of speed with regard to time and traversed distance, and it describes both uniform and uniformly difform motion. Like William of Ockham, Kilvington is convinced that a motion is nothing else than an individual thing in motion. Therefore, speed has to be measured by distances, i.e., latitude of a quality (formal distance) or quantity traversed, and such traversals take time unless the speed is infinitely great. In his questions he considers all sorts of motion, which can occur both in a medium and in a void. Although he holds that the vacuum does not exist in nature, he is nevertheless convinced, contrary to Aristotle, that neither logic nor nature exclude a possible existence of a vacuum. Moreover, using a new rule of motion it is possible to show that a motion in a vacuum would be temporal for both mixed and simple bodies. Ockham’s influence is also confirmed in Kilvington’s considerations of qualitative changes, which was also one of the most frequently discussed issues in the 14th century. Kilvington is convinced that two main Ockhamist principles, namely particularist ontology and economy of thinking, suffice to explain all qualitative changes, such becoming white or cold. Since a quality is a real thing, it is enough to conclude that in the process of becoming hot a body possesses the same quality, which changes from one extreme, i.e., coldness to the other, i.e., hotness. Such terms as the “latitude of a form”, “degree of coldness” etc. are nothing else but sincategorematic terms, which we use to describe qualitative changes. In reality, there are only substances and qualities, the only existing permanent things, while the remaining eight Aristotelian categories serve only to describe various aspects of an individual thing in the outside reality. Kilvington’s teaching on natural philosophy was influential both in England and on the Continent. His Quaestiones de motu were well known to the next generation of the Oxford Calculators and influenced also such prominent Parisian masters as Nicole Oresme and John Buridan. It was Thomas Bradwardine, however, who was the most renowned beneficiary of Kilvington’s work, so much that until recently he was called the Founder of the Oxford Calculators’ School,. The analysis of dispersal of new ideas of mathematical physics point strongly at Kilvington as their primary source. In his famous Treatise on proportions in motion (the best know medieval treatise presenting a new rule of motion) Bradwardine incorporated almost one half of Kilvington’s first and third questions on motion. Extolling of Bradwardine’s treatise by his followers and modern historians of medieval science and swift oblivion of Kilvington’s work were caused by the fact that Bradwardine treatise was a manual for students following the rules for this type of work, i.e., dividing material in chapters, which present general rules based on a theory of proportion, while Kilvington’s questions are the result of his lecturing; one can easily notice that some parts of them are students’ reportata, so their text is difficult in reading. In the present book I reiterate the opinion expressed in my previous book that medieval science was a specific phenomenon of the medieval culture. It can hardly be compared with modern science and its views of the world are clearly incompatible with the modern ones. In its history, medieval science took the Aristotelian course, thoroughly explored that framework exposing its paradoxes and weakness and reached the point, where it was no longer able to overcome the lingering doubt. Its story is finished, so each historian of science is free to write his or her own tale about it. In my opinion, Richard Kilvington, even though he abandoned Aristotle’s prohibition of metabasis, which does not allow to use mathematics as a proper language for physics, and invented a few new methods, still strove to overcome the difficulties and the numerous aporiae of Aristotelian physics, showing how we should properly understand the Philosopher.pl_PL
dc.language.isoplpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pl/*
dc.subjectRyszard Kilvingtonpl_PL
dc.subjectArystotelespl_PL
dc.subjectTomasz Bradwardinepl_PL
dc.subjectśredniowieczepl_PL
dc.subject„Kwestie o ruchu”pl_PL
dc.titleArystoteles na nowo odczytany. Ryszarda Kilvingtona „Kwestie o ruchu”pl_PL
dc.typeBookpl_PL
dc.rights.holder© Copyright by Uniwersytet Łódzki, Łódź 2014pl_PL
dc.page.number346pl_PL
dc.contributor.authorAffiliationUniwersytet Łódzki, Wydział Filozoficzno-Historyczny Katedra Historii Filozofii, 90-232 Łódź, ul. Kopcińskiego 16/18pl_PL
dc.referencesBruges, Stedelijke Openbare Bibl. 503.pl_PL
dc.referencesErfurt, Wissenschaftliche Allgemeinbibl. Amplon O. 74.pl_PL
dc.referencesErfurt, Wissenschaftliche Allgemeinbibl. Amplon O. 78.pl_PL
dc.referencesOxford, Bodleian Libr., Canon. Misc. 226.pl_PL
dc.referencesOxford, Peterhouse 279.pl_PL
dc.referencesParis, Bibl. Mazarine lat. 915.pl_PL
dc.referencesParis, BnF. lat. 6559.pl_PL
dc.referencesParis, BnF. 16401.pl_PL
dc.referencesPrague, Bibl. Univ. III B. 10.pl_PL
dc.referencesSeville, Bibli. Capit y Colombina 7-7-13.pl_PL
dc.referencesTortosa, Bibl. Catedral 186.pl_PL
dc.referencesTrozes, Bibl. Mun. 1477.pl_PL
dc.referencesVatican, Ottob. lat. 179.pl_PL
dc.referencesVatican, Palat. lat. 1049.pl_PL
dc.referencesVatican, Vat. lat. 955.pl_PL
dc.referencesVatican, Vat. lat. 986.pl_PL
dc.referencesVatican, Vat. lat. 2148.pl_PL
dc.referencesVatican, Vat. Lat. 2225.pl_PL
dc.referencesVatican, Vat. lat. 4353.pl_PL
dc.referencesVenise, Bibl. San Marco VI, 72 (2810).pl_PL
dc.referencesVienne, ONB. Palat. lat. 431.pl_PL
dc.referencesAnonymous, Probationes conclusionum, [w:] Hentisberi de sensu composito et diviso, Regulae solvendi sophismata, Venetiis 1494.pl_PL
dc.referencesAnonymous, Tractatus de sex inconvenientibus, Bonetus Locatellus, Venetiis 1505.pl_PL
dc.referencesAverroes, Commentarium in De generatione et corruptione, [w:] Aristotelis opera cum Averrois commentariis, t. IX, Venetiis, apud Iunctas M.D.LXII.pl_PL
dc.referencesAverroes, Commentarium in Metaphysicam, [w:] Aristotelis opera cum Averrois commentariis, t. VIII, Venetiis, apud Iunctas M.D.LXII.pl_PL
dc.referencesAverroes, Commentarium in Physicam, [w:] Aristotelis opera cum Averrois commentariis, t. IV, Venetiis, apud Iunctas M.D.LXII.pl_PL
dc.referencesGaetano di Thiene, Recollecte super octo libros physicorum Aristotelis, Trevisio 1476.pl_PL
dc.referencesGaetano di Thiene, Recollecte super Regulas Hentisberi, [w:] Hentisberi de sensu composito et diviso, Regulae solvendi sophismata, Venetiis 1494.pl_PL
dc.referencesGualterus Burlaeus, In Physicam Aristotelis expositio et quaestiones, Venetiis 1501.pl_PL
dc.referencesGualteru Burleaus, Tractatus secundus de intensione et remisssione formarum accidentalium, Venice 1496.pl_PL
dc.referencesGuilelmus Hentisberus, Regule solvendi sophismata, Venetiis 1494.pl_PL
dc.referencesJohannes Buridanus, Quaestiones super octo Physicorum libros, Parisis 1500.pl_PL
dc.referencesIohannis Duns Scoti in octo libros physicorum quaestiones et expositio, Venetiis 1617.pl_PL
dc.referencesScriptorum illustrium maioris Britaniae, Basel 1557–1559.pl_PL
dc.referencesAnonymous, Tractatus de maximo et minimo, [w:] J. Longeway, William Heytesbury on Maxima and Minima, Chapter 5 of “Rules for solving sophismata” with an anonymous fourteenth-century discussion, Dordrecht 1984.pl_PL
dc.referencesArchimedes, On the Equilibrium of Planes, ed. M. Clagett, [w:] M. Clagett, The Science of Mechanics in the Middle Ages, Madison 1959.pl_PL
dc.referencesAverroes Cordubensis commentum magnum super libro De celo et mundo Aristotelis, ed. by F.J. Carmody, R. Arnzen, Leuven 2003.pl_PL
dc.referencesAverroes, Commentarium magnum in Aristotelis libros De anima, ed. by F.S. Crawford, Cambridge Mass. 1953.pl_PL
dc.referencesCampanus de Novara, Elementa, [w:] Campanus of Novara and Euclid’s “Elements”, ed. by H.L.L. Busard, Franz Steiner Verlag 2005.pl_PL
dc.referencesEuclides, Elementorum libri priores XII ex Commandini et grecorum versionibus latinis, ed. by S. Horsley, Oxford 1802.pl_PL
dc.referencesEuclides, Liber de ponderoso et levi et de comparatione corporum ad invicem, ed. by M. Clagett, [w:] The Medieval Science of Weights (Scientia de ponderibus): Treatises Acribied Euclid, Archimedes, Thabit Ibn Qurra, Jordanus de Nemore, Blasius of Parma, ed. by E.A. Moody, M. Clagett, The University of Wisconsin Press, Wisconsin 1952.pl_PL
dc.referencesGualterus Burleus, Super Arystotelis libros de physica auscultatione...commentaria, Venice 1589.pl_PL
dc.referencesGuillelmus Ockham, Opera philosophica et theologica, ed. by G. Gal, St. Brown et al., St. Bonaventura N.Y. 1967–1995.pl_PL
dc.referencesIn Arystotelis de caelo libros commentaria, hrsg. von J. L. Heiberg, [w:] Commentaria in Arystotelem graeca, vol. 7, Berlin 1894.pl_PL
dc.referencesJohannes Buridanus, Expositio et Quaestiones in Aristotelis De Caelo, éd. B. Patar, Louvain–Paris 1996.pl_PL
dc.referencesJohannes Buridanus, Quaestiones super libris quattuor „De celo et mundo”, ed. by E. Moody, London 1948.pl_PL
dc.referencesJohannes Sacrobosco, Tractatus de sphera, [w:] L. Thorndike, The Sphere of Sacrobosco and Its Commentators, Chicago 1949.pl_PL
dc.referencesJohannes de Tinemue’s redaction of Euclid’s Elements the so-called Adelard III version, introduction, sigla and descriptions by H.L.L. Busard, Stuttgart 2001.pl_PL
dc.referencesJordanus Nemorarius, Liber Jordani de Nemore “De ratione ponderis”, ed., with introduction, translation and notes by E. Moody, [w:] The Medieval Science of Weights (Scientia de ponderibus): Treatises Acribied Euclid, Archimedes, Thabit Ibn Qurra, Jordanus de Nemore, Blasius of Parma, ed. by E.A. Moody, M. Clagett, The University of Wisconsin Press, Wisconsin 1952.pl_PL
dc.referencesJordanus Nemorarius, De elementis Arithmetice Artis, ed. by H.L.L. Busard, [w:] H.L.L. Busard, Jordanus de Nemore, De elementis Arithmetice Artis. A Medieval Treatise on Number Theory, Stuttgart 1991.pl_PL
dc.referencesRichardus Kilvington, Sophismata, ed. by B.E. Kretzmann, N. Kretzmann,[w:] The Sophismata of Richard Kilvington, Oxford 1991.pl_PL
dc.referencesRicardus Kilvington, Utrum continuum sit divisibile in infinitum, ed. by R. Podkoński, [w:] „Mediaevalia Philosophica Polonorum” 2007, XXXVI(II).pl_PL
dc.referencesRobert Grosseteste, De calore solis, ed. by L. Baur, [w:] L. Baur, Die Philosophie des Robert Grosseteste, Bishofs von Lincoln, „Beitrage zur Geschichte der Philosophie des Mittelalter“, Bd 18, H. 4–6, Munster 1917.pl_PL
dc.referencesRobert Grosseteste, De colore, [w:] The Dimensions of Colour Robert Grosseteste’s De colore, ed. by G. Dinkova-Bruun et al., Toronto 2013.pl_PL
dc.referencesRobert of Chester’s (?) Redaction of Euclid’s Elements, the so-called Adelard II Version, ed. by H.L.L. Busard, M. Folkers, Basel–Boston–Berlin 1992.pl_PL
dc.referencesRogerus Baconus, Communia mathematica, ed. by R. Steele, Oxford 1940.pl_PL
dc.referencesThe First Latin Translation of Euclid’s Elements commonly ascribed to Adelard of Bath, ed. by H.L.L. Busard, Toronto 1983.pl_PL
dc.referencesThomas Bradwardine, Opus artis logicae, [w:] J. Pinborg, A Logical Treatise ascribed to Bradwardine, [w:] Studi sul XIV secolo in memoria di Anneliese Maier, a cura di A. Maieru, A. Paravicini Bagliani, Roma 1981.pl_PL
dc.referencesThomas Bradwardine, Tractatus proportionum seu de proportionibus velocitatum in motibus, [w:] H.L. Crosby Jr., Thomas of Bradwardin. His Tractatus de Proportionibus. Its Significance for the Developement of Mathematical Physics, The University of Wisconsin Press, Madison 1955.pl_PL
dc.referencesThomas Bradwardine, De incipit et desinit, [w:] L.O. Nielsen, Thomas Bradwardine’s „Treatise on ‘incipit’ and ‘desinit’”, „Cahiers de l’Institut du Moyen Age Grec et Latin” 1982.pl_PL
dc.referencesThomas de Aquino, Opera omnia, t. 1–15 (wydanie Leonińskie), Roma 1882 – .pl_PL
dc.referencesArystoteles, Analityki wtóre, tłum. K. Leśniak, [w:] Dzieła wszystkie, t. 1, Warszawa 1990.pl_PL
dc.referencesArystoteles, Fizyka, tłum. K. Leśniak, [w:] Dzieła wszystkie, t. 2, Warszawa 1990.pl_PL
dc.referencesArystoteles, Kategorie, tłum. K. Leśniak, [w:] Dzieła wszystkie, t. 1, Warszawa 1990.pl_PL
dc.referencesArystoteles, Metafizyka, tłum. K. Leśniak, [w:] Dzieła wszystkie, t. 2, Warszawa 1990.pl_PL
dc.referencesArystoteles, O świecie, tłum. A. Paciorek, [w:] Dzieła wszystkie, t. 2, Warszawa 1990.pl_PL
dc.referencesArystoteles, O niebie, tłum. P. Siwek, [w:] Dzieła wszystkie, t. 2, Warszawa 1990.pl_PL
dc.referencesArystoteles, O powstawaniu i niszczeniu, tłum. L. Regner, [w:] Dzieła wszystkie, t. 2, Warszawa 1990.pl_PL
dc.referencesJan Buridan, Dzięki czemu porusza się przedmiot rzucony, tłum. D. Gwis, M. Gensler, E. Jung[-Palczewska], [w:] Wszystko to ze zdziwienia. Antologia tekstów filozoficznych z XIV wieku, oprac. wstęp, wybór E. Jung[-Palczewska], Warszawa 2000.pl_PL
dc.referencesLukrecjusz Carus Titus, O naturze rzeczy, tłum. G. Żurek, Warszawa 1994.pl_PL
dc.referencesRicardus de Bury, Philobiblion, czyli O miłości ksiąg, tłum. J. Kasprowicz, Gdańsk 1992.pl_PL
dc.referencesRobert Grosseteste, Wybór pism, [w:] M. Boczar, Grossteste, Warszawa 1994.pl_PL
dc.referencesWalter Burley, O powiększaniu i zmniejszaniu się form przypadłościowych, tłum. D. Gwis, M. Gensler, E. Jung[-Palczewska], [w:], Wszystko to ze zdziwienia. Antologia tekstów filozoficznych z XIV wieku, oprac. wstęp, wybór E. Jung[-Palczewska], Warszawa 2000.pl_PL
dc.referencesWilhelm Heytesbury, O prawdzie i fałszu zdania, tłum. M. Gensler, D. Gwis, E. Jung[-Palczewska], [w:] Wszystko to ze zdziwienia. Antologia tekstów filozoficznych z XIV wieku, oprac. wstęp, wybór E. Jung[-Palczewska], Warszawa 2000.pl_PL
dc.referencesWilhelm Ockham, Suma logiczna, tłum. T. Włodarczyk, Warszawa 2010.pl_PL
dc.referencesWilhelm Ockham, O nauce w ogóle a nauce przyrodniczej w szczególności, tłum. M. Gensler, D. Gwis, E. Jung[-Palczewska], [w:] Wszystko to ze zdziwienia. Antologia tekstów filozoficznych z XIV wieku, oprac. wstęp, wybór E. Jung[-Palczewska], Warszawa 2000.pl_PL
dc.referencesAdams McCord M., William Ockham, t. 1-2, Indianapolis 1987.pl_PL
dc.referencesAristotelismo veneto e scienza moderna, L. Olivieri (red.), t. 1–2, Padua 1983.pl_PL
dc.referencesArticles on Aristotle, ed. by J. Barnes, M. Schofield, R. Sorabji, New York 1979.pl_PL
dc.referencesKatz B.D., On a „Sophisma” of Richard Kilvington and a Problem of Analysis, „Medieval Philosophy and Theology” 1996, no. 5, s. 31–38.pl_PL
dc.referencesBiard J., Logique et théorie du signe au XIV siècle, Paris 1989.pl_PL
dc.referencesBoczar M., „Scientiae mediae” w ujęciu Roberta Grosseteste, „Kwartalnik Historii Nauki i Techniki” 1981, 26, nr 1, s. 23–39.pl_PL
dc.referencesBoczar M., Grosseteste, Warszawa 1994.pl_PL
dc.referencesBoehner Ph., Ockham Philosophical Writings (Introduction), Indianpolis 1990, s. IX–LV.pl_PL
dc.referencesBottin F., Analisi linguistica e fisica Aristotelica nei ‘Sophysmata’ di Ricard Kilmyngton, [w:] Filosofia e Politica, et altri sagii, ed. de C. Giacon, Padua 1973, s. 125–145.pl_PL
dc.referencesBoyer C.B., A History of Mathematics, New York 1997.pl_PL
dc.referencesBusard H.L.L, A Latin Translation of an Arabic Commentary on Book X of Euclid’e „Elements”, „Medieval Studies” 1997, no. 59, s. 19–110.pl_PL
dc.referencesBusard H.L.L., Die Traktate „De proportionibus” von Jordanus Nemorarius und Campanus, „Centaurus”, 1970, vol. XV, s. 193–227.pl_PL
dc.referencesButterfield H., Rodowód współczesnej nauki 1300–1800, tłum. H. Krahelska, Warszawa 1963.pl_PL
dc.referencesCalendar on Entries in the Papal Registers relating to Great Britain and Ireland, vol. 1–2, London 1895.pl_PL
dc.referencesThe Cambridge History of Later medieval Philosophy. From the Rediscovery of Aristotle to the Disintegration of Scholasticism 1100–1600, ed. by N. Kretzmann, A. Kenny, J. Pinborg, Cambridge 1982.pl_PL
dc.referencesCaroti S., Da Walter Burley al „Tractatus sex inconvenientium”: La Tradizione Inglesse della Discussione Medievale „De reactione”, „Medioevo” 1995, vol. 22, s. 280–305.pl_PL
dc.referencesChambre W., Continuatio Historiae Dunelmensis, Newcastle 1839.pl_PL
dc.referencesClagett M., Archimedes in the Middle Ages, vol. 1-5, Madison 1964–1980.pl_PL
dc.referencesClagett M., Giovanni Marliani and the Late Medieval Physics, New York 1967.pl_PL
dc.referencesClagett M., Moody E.A., The Medieval Science of Weights, Madison 1952.pl_PL
dc.referencesClagett M., The Impact of Archimedes on Medieval Science, „Isis” 1959, vol. 50, s. 419–429.pl_PL
dc.referencesClagett M., The Medieval Latin Translation from the Arabic of the „Elements” of Euclid with Special Emphasis on the Version of Adelard of Bath, „Isis” 1953, vol. XLIV, s. 25–46.pl_PL
dc.referencesClagett M., The Science of Mechanics in the Middle Ages, Wisconsin 1959.pl_PL
dc.referencesCohen H., The Scientific Revolution. A Historiographical Inquiry, Chicago 1994.pl_PL
dc.referencesCourtenay W.J., Force of Words and Figures of Speech: The Crisis over Virtus sermonis in the Fourteenth Century, „Franciscan Studies” 1984, vol. 22, s. 107–128.pl_PL
dc.referencesCourtenay W.J., Schools and Scholars in Fourteenth-Century England, Princeton 1987.pl_PL
dc.referencesCourtenay W.J., The Involvement of Logic in Late Medieval Natural Philosophy, [w:] Studies in Medieval Natural Philosophy, ed. by S. Caroti, Firenze 1989, s. 3 23.pl_PL
dc.referencesCourtenay W.J., The Role of English Thought in the Transformation of University Education in the Late Middle Ages, [w], Rebirth, Reform, and Resilence. Universities in Transition 1300–1700, ed. by J.M. Kittelson, P.J. Transue, Columbus Ohio 1984, s. 103–162.pl_PL
dc.referencesCourtenay W.J., Theology and Theologians from Ockham to Wyclif, [w: ], The History of the University of Oxford, vol. 1: The early Oxford Schools, ed. by J.I. Catto, Oxford 1984; vol. 2: Late Medieval Oxford, ed. by J.I. Catto, R. Evans, Oxford 1992. s. 46–47.pl_PL
dc.referencesCrombie A., Medieval and Early Modern Science, Oxford 1959.pl_PL
dc.referencesCrombie A., Nauka średniowieczna i początki nauki nowożytnej, tłum. S. Łypaczewski, t. 1–2, Warszawa 1960.pl_PL
dc.referencesThe Critical Problems in the History of Science, ed. by M. Clagett, Madison 1959.pl_PL
dc.referencesCrombie A., The Significance of Medieval Discussions of Scientific Revolution, [w:], The Critical Problems in the History of Science, ed. by M. Clagett, Madison wisc. 1959, s. 79–101.pl_PL
dc.referencesCrosby H.L.Jr., Thomas Bradwardine: His Tractatus de Proportionibus. Its Significance for Development of Mathematical Physics, Madison 1955.pl_PL
dc.referencesThe Cultural Context of Medieval Learning, ed. by J.E. Murdoch, E.D. Sylla, Dordrecht 1975.pl_PL
dc.referencesDavis J., Ockham’s on Aristotle’s „Physics”, St. Bonaventure, New York 1989.pl_PL
dc.referencesDie Philosophie im 14 und 15 Jahrhundert. In memoriam Konstanty Michalski (1879–1947), hrsg. von O. Pluta, Amsterdam 1988.pl_PL
dc.referencesDivine Omniscience and Omnipotence in Medieval Philosophy. Islamic, Jewish and Christian Perspectives, ed. by T. Rudavsky, Utrecht 1985.pl_PL
dc.referencesDolnikowski E., Thomas Bradwardine. A View of Time and a Vision of Eternity in Fourteenth-Century Thought, Leiden 1995.pl_PL
dc.referencesDrake S., Uniform Acceleration, Space and Time, „British Journal for the History of Science” 1970, vol. 5, no. 1, s. 36–43.pl_PL
dc.referencesDuhem P., Etudes sûr Leonardo de Vinci, vol. 1–3, Paris 1906–1913.pl_PL
dc.referencesDuhem P., Le système du monde, t. 1–10, Paris 1906–1959.pl_PL
dc.referencesEmden A.B., A Biographical Register of the University of Oxford to a.d. 1500, vol. 1–2, Clarendon 1957–1959.pl_PL
dc.referencesEssays in Honor of Jaakko Hintikka, ed. by E. Saarinen et al., Dordrecht 1979.pl_PL
dc.referencesFilosofia e scienze nella tarda scolastica: Studi sul XIV secolo in memoria di Annelise Maier, ed. de A. Maierú, A. Paravicini Bagliani, Roma 1981.pl_PL
dc.referencesFletcher J. M., The Faculty of Art, [w:] The History of the University of Oxford, vol. 1: The early Oxford Schools, ed. by J. I. Catto, Oxford 1992.pl_PL
dc.referencesFrom Ockham to Wyclif, ed. by A. Hudson, M. Wilks, Oxford 1987.pl_PL
dc.referencesFunkenstein A., Theology and the Scientific Imagination from the Middle Ages to the Seventeenth Century, Princeton 1986.pl_PL
dc.referencesGensler M., Kłopotliwa zmiana czyli Waltera Burleya zmagania ze zmiennością rzeczy, Łódź 2007.pl_PL
dc.referencesGilbert N., Richard de Bury and the „Quires of Yesterday Sophims”, [w:] Philosophy and Humanism Renaissance. Essays in honor of. P. O. Kristeller, ed. by E. Mahoney, Columbia 1976, s. 229–257.pl_PL
dc.referencesGoddu A., The physics of William of Ockham, Leiden 1984.pl_PL
dc.referencesGoff le J., Inteligencja w wiekach średnich, przeł. E. Bąkowska, Warszawa 1997.pl_PL
dc.referencesGrant E., Bradwardine and Galileo Equality of Velocities in the Void, „Archives for History of Exact Sciences” 1964, vol. 2, no. 3, s. 345–364.pl_PL
dc.referencesGrant E., Late Medieval Thought, Copernicus, and the Scientific Revolution, „Journal of the History of Ideas” 1962, vol. 23, s. 197–220.pl_PL
dc.referencesGrant E., Medieval and seventeenth-Century Conceptions of an Infinite Void Space beyond the Cosmos, „Isis” 1969, vol. 60, s. 39–60.pl_PL
dc.referencesGrant E., Motion in a Void and the Principle of Inertia in the Middle Ages, „Isis” 1964, vol. 55, s. 265–292.pl_PL
dc.referencesGrant E., Much Ado About Nothing. Theories of Space and Vacuum from the Middle Ages to the Scientific Revolution, Cambridge University Press 1981.pl_PL
dc.referencesGrant E., Studies in Medieval Science and Natural Philosophy. Collected papers, London 1981.pl_PL
dc.referencesGrobler A., Problem redukcji a teza o niewspółmierności w teoriach naukowych, Wrocław 1986.pl_PL
dc.referencesGwynn A., Archbishop FitzRalph and the Friars, „Studies” 1937, vol. 26, s. 50–67.pl_PL
dc.referencesGwynn A., The Sermon-Diary of Richard FitzRalph, Archbishop of Armagh, „Proceedings of the Royal Irish Academy” 1937, vol. 44, no. 1, s. 1–57.pl_PL
dc.referencesHall A.R., Rewolucja naukowa 1500–1800. Kształtowanie się nowożytnej postawy naukowej, tłum. T. Zembrzuski, Warszawa 1996.pl_PL
dc.referencesHamesse J., Auctoritates Aristotelis, Senecae, Boethii, Platonis, Apulei et quorundam aliorum, Louvain 1972.pl_PL
dc.referencesHeuser W., With an O and an I, „Anglia” 1904, vol. 27, s. 314–319.pl_PL
dc.referencesThe History of the University of Oxford, vol. 1: The early Oxford Schools, ed. by J.I. Catto, Oxford 1984; vol. 2: Late Medieval Oxford, ed. by J.I. Catto, R. Evans, Oxford 1992.pl_PL
dc.referencesHugonnard-Roche H., Analyse sémantique et analyse secundum imaginationem dans la physique Parisienne au XIV siecle, [w:] Studies in Medieval Natural Philosophy, ed. by S. Caroti, Firenze 1989, s. 133–153.pl_PL
dc.referencesInfinity and Continuity in Ancient and Medieval Thought, ed. by N. Kretzmann, Ithaca, New York 1982.pl_PL
dc.referencesJung E, Podkoński R., The Transmission of English Ideas in the Fourteenth Century—the Case of Richard Kilvington, „Mediaevalia Philosophica Polonorum” 2009, nr 37 (3), s. 59–69;.pl_PL
dc.referencesJung E., „Richard Kilvington”, [w:] The Stanford Encyclopedia of Philosophy (Fall 2011 Edition), ed. by Edward N. Zalta, dostęp elektroniczny: http://plato.stanford.edu/archives/fall2011/entries/kilvington/.pl_PL
dc.referencesJung E., Michałowska M., Jak być sprawiedliwym? Ryszarda Kilvingtona komentarz do Etyki Arystotelesa, „Roczniki Filozoficzne” 2008, nr 56 (2), s. 117–129.pl_PL
dc.referencesJung E., Michałowska M., Scotistic and Ockhamist Contribution to Kilvington’s Ethical and Theological Views, [w:] 1308 Ein Topographie historischaer Gleichzeitigkeit, Berlin–New York 2010, s. 104–125.pl_PL
dc.referencesJung E., Physical Forms and Matter, [w:] A Companion to Walter Burley. Late Medieval Logician and Metaphysocian, ed. by A. Conti, Leiden–Boston 2013, 247–266.pl_PL
dc.referencesJung E., Podkoński R., Richard Kilvington on continuity, [w:] Atomism in Late Medieval Philosophy and Theology, ed. by C. Grellard, A. Robert, Leiden–Boston 2009, s. 65–84.pl_PL
dc.referencesJung E., Why was Mediewal Science Doomed?, „Herbst de Mittelalters”? Fraget zur Bewertung des 14. und 15. Jahnhunderts, Berlin–New York 2004, s. 395–511.pl_PL
dc.referencesJung[-Palczewska] E., Procedura secundum imaginationem w czternastowiecznej filozofii przyrody, [w:] Księga pamiątkowa ku czci profesora Zdzisława Kuksewicza, pod red. E. Jung[-Palczewskiej], Łódź 2000, s. 57–79.pl_PL
dc.referencesJung[-Palczewska] E., Filozofia XIV wieku, [w:] Wszystko to ze zdziwienia. Antologia tekstów filozoficznych z XIV wieku, oprac. wstęp, wybór E. Jung[-Palczewska], Warszawa 2000, s. XIII–XLVII.pl_PL
dc.referencesJung[-Palczewska] E., From Oxonian Sources to Parisian Rebellion: Attempts to Overcome Aristotelianism in Fourteenth-Century Physics, [w:] Bilan et perspectives des etudes medievales (1993–1998), Brepols Publishers 2004, s. 429–435.pl_PL
dc.referencesJung[-Palczewska] E., Między filozofią przyrody a nowożytnym przyrodoznawstwem. Ryszard Kilvington i fizyka matematyczna w średniowieczu, Łódź, 2002.pl_PL
dc.referencesJung[-Palczewska] E., Motion in a Vacuum and in a Plenum in Richard Kilvington’s Question Utrum aliquod corpus simplex posset moveri aeque velociter in vacuo et in pleno from the “Commentary on the Physics”, „Miscellanea Mediaevalia” 1998, nr 25, s. 179–193.pl_PL
dc.referencesJung[-Palczewska] E., Natura more geometrico: Średniowiecze jako pośrednik w recepcji matematyki greckiej dla potrzeb fizyki, „Studia Warmińskie” 2000, nr XXVI, s. 129–139.pl_PL
dc.referencesJung[-Palczewska] E., The Concept of Time in Richard Kilvington, [w:] Tempus, Aevum, Eternity. La Conzettualizzazione del tempo nel Pensiero Tardomiedievale, ed. de L. Cova and G. Alliney, Firenze: Leo S. Olschki, 2000, s. 141–167.pl_PL
dc.referencesJung[-Palczewska] E., Walter Burley, [w:] Wszystko to ze zdziwienia. Antologia tekstów filozoficznych z XIV wieku, oprac. wstęp, wybór E. Jung[-Palczewska], Warszawa 2000, s. 123–127.pl_PL
dc.referencesJung[-Palczewska] E., Wilhelm Heytesbury, [w:] Wszystko to ze zdziwienia. Antologia tekstów filozoficznych z XIV wieku, oprac. wstęp, wybór E. Jung[-Palczewska], Warszawa 2000, s. 319–322.pl_PL
dc.referencesJung[-Palczewska] E., Wilhelm Ockham, [w:] Wszystko to ze zdziwienia. Antologia tekstów filozoficznych z XIV wieku, oprac. wstęp, wybór E. Jung[-Palczewska], Warszawa 2000, s. 197–201.pl_PL
dc.referencesJung[-Palczewska] E., Works by Richard Kilvington, „Archives d’Histoire Doctrinale et Litteraire du Moyen Age”, 2000, vol. 67, s. 184–225.pl_PL
dc.referencesKamiński S., Ockhama koncepcja wiedzy przyrodniczej, „Roczniki Filozoficzne” 1968, r. XVI, nr 1, s. 113–123.pl_PL
dc.referencesKline M., Mathematical Thought from Ancient to Modern Times, Oxford 1972.pl_PL
dc.referencesKnorr W.R., Archimedes and the Pre-Euclidean Proportion Theory, „Archives International d’Histoire des Sciences” 1978, vol. 28, no. 103, s. 183–223.pl_PL
dc.referencesKrauze-Błachowicz K., Filozofia XIII wieku, [w:] Wszystko to ze zdziwienia. Antologia tekstów filozoficznych z XIII wieku, oprac. wstęp, wybór K. Krauze-Błachowicz, Warszawa 2002, s. XIII–LX.pl_PL
dc.referencesKuhn T., Dwa bieguny, tłum. S. Amsterdamski, Warszawa 1985.pl_PL
dc.referencesKuhn T., Przewrót Kopernikański, tłum. S. Amsterdamski, Warszawa 1965.pl_PL
dc.referencesKuhn T., Struktura rewolucji naukowych, tłum. H. Ostromęcka, Warszawa 1968.pl_PL
dc.referencesKuhn T., Theory Change as Strukture-Change: Comments on the Sneed Formalism, „Erkenntnis” 1976, no. 10, s. 300–310.pl_PL
dc.referencesLa nouvelle physique du XIVe siécle, ed. par S. Caroti, P. Soufrin, Firenze 1997.pl_PL
dc.referencesLang H.S., Aristotle’s „Physics” and Its Medieval Varieties, New York, 1992.pl_PL
dc.referencesLaughlin Mc M., William of Ockham. The Metamorphosis of Scholastic Discourse, Manchester 1975.pl_PL
dc.referencesLewis C., The Merton Tradition and Kinematics in Late Sixteenth and Early Sevententh Century Italy, Padova 1980.pl_PL
dc.referencesLindberg D., On the Applicability of Mathematics to Nature: Roger Bacon and His Predecessors, „British Journal for the History of Science” 1982, vol. 15, s. 3–25.pl_PL
dc.referencesLindberg D., Theories of Vision from Al-Kindi to Kepler, Chicago 1976.pl_PL
dc.referencesLivesey S.J., The Oxford Calculatores, Quantification of Qualities and Aristotle’s Prohibision of Metabasis, „Vivarium” 1986, vol. XXIV, no. 1, s. 50–69.pl_PL
dc.referencesLogique, theologie au XIVe siecle. Preuve et Raison a l’Universite de Paris, ed. par Z. Kaluza, P. Vignaux, Paris 1984.pl_PL
dc.referencesLohr Ch.H., Medieval Latin Aristotle Commentaries, „Traditio” 1972, vol. 8.pl_PL
dc.referencesLongeway J., Wiliam Heytesbury on Maxima and Minima. Chapter 5 of ‘Rules for solving sophismata’ with an anonymous fourteenth-century discussion, Dordrecht 1984.pl_PL
dc.referencesMaier A., An der Grenze von Scholastik und Naturwissenschaft, [w:] Studien zur Naturphilosophie der Spatscholastik (Edizioni di Storia e Letteratura, t. 3), Roma 1952.pl_PL
dc.referencesMaier A., Ausgehendes Mittelalters, Rome 1964.pl_PL
dc.referencesMaier A., Zwei Grudprobleme der Scholastichen Naturphilosophie, [w:] Studien zur Naturphilosophie der Spatscholastik (Edizioni di Storia e Letteratura, t. 2), Roma 1951.pl_PL
dc.referencesMaier A., Zwischen Philosophie und Mechanik, Roma 1958.pl_PL
dc.referencesMathematics and its applications to science and natural philosophy in the Middle Ages, ed. by E. Grant, J. Murdoch, Cambridge 1987.pl_PL
dc.referencesMeaning and Inference in Medieval Philosophy, ed. by N. Kretzmann, Dordrecht 1988.pl_PL
dc.referencesMedieval concept of the latitude of forms. The Oxford Calculators, „Archives d’Histoire Doctrinale et Litteraire du Moyen Age” 1974, vol. 40, s. 223–283.pl_PL
dc.referencesMedieval Philosophy, ed. by J. Marenbon, [w:] The Routledge History of Philosophy, vol. 3, London 1998.pl_PL
dc.referencesMichalski K., La physique nouvelle et les différents courants philosophiques au XIV s., „Bulletin International de l’Académie Polonaise des Sciences et de Lettres, Classe d’Histoire et de la philosophie” 1927, nr 7–10, Cracoviae 1928, s. 93–164.pl_PL
dc.referencesMichalski K., Odrodzenie nominalizmu w XIV wieku, „Kwartalnik Filozoficzny” 1926, r. *-4, z. 2, s. 171–216, z. 4, s. 477–496.pl_PL
dc.referencesMolland G., Mathematics and the Medieval Ancestry of Physics. Collected papers, London 1995.pl_PL
dc.referencesMolland G., The Geometrical Background to the „Merton School”, „British Journal for the History of Science” 1968, vol. 4, s. 108–125.pl_PL
dc.referencesMoody E., Studies in Medieval Philosophy, Science, and Logic. Collected Papers, 1933–1969, Berkeley 1975.pl_PL
dc.referencesMotion and Time, Space and matter, ed. by P. Machamer, R. Turnbull, Cleveland–Ohio 1976.pl_PL
dc.referencesMurdoch J., The Medieval and Renaissance Tradition of Minima Naturalia, [w:] Late Medieval and Early Modern Corpuscular Matter Theories, ed. by Ch. Luthy, J.E. Murdoch, W.R. Newman, Leiden–Boston–Koeln 2001.pl_PL
dc.referencesMurdoch J.E., Euclides Graeco-Latinus. A Hithero Unknown Medieval Latin Translation of the „Elements” Made Directly from the Greek, „Harvard Studies in Classical Philology” 1967, vol. 71, s. 269–187.pl_PL
dc.referencesMurdoch J.E., Infinite Times and Spaces in the Later Middle Ages, „Miscellanea Mediaevalia” 1998, nr 25, s. 194–205.pl_PL
dc.referencesMurdoch J.E., Mathesis in Philosophiam Scholasticam Introducta: The Rise and Developement of the Application of Mathematics in Fourteenth-Century Philosophy and Theology, [w:] Arts liberaux et philosophie au moyen âge. Actes du quatrième congres international de philosophie médiévale, Montrèal 1969, s. 215–254.pl_PL
dc.referencesMurdoch J.E., Philosophy and the Enterprise of Science in the Lates Middle Ages, [w:] The Interaction between Science and Philosophy, ed. by Y. Elkana, Atlantic Highlands, New York 1974, s. 51–74.pl_PL
dc.referencesMurdoch J.E., The Analytical Character of Late Medieval Learning: Natural Philosophy without Nature, [w:] Approaches to Nature in the Middle Ages, ed. by L.D. Roberts, Binghamton, New York 1982, s. 171–213.pl_PL
dc.referencesMurdoch J.E., The Medieval Euclid: Salient Aspects of the Translations of the „Element” by Adelard of Bath and Campanus of Novara, „Revue de Synthese” 1968, vol. 49, s. 67–94.pl_PL
dc.referencesKretzmann N., Kretzmann B.E., The „Sophismata” of Richard Kilvington (Introduction), Oxford 1991.pl_PL
dc.referencesNorth W., The Fourteenth Century, [w: ] The History of Medieval Philosophy, ed. by J.I. Catto, Cambridge 1992, s. 72–102.pl_PL
dc.referencesPanussio C., Les mots, les concepts et les choses, Paris 1991.pl_PL
dc.referencesPlooij E.B., Euclid’s Conception of Ratio and His definition of Proportional Magnitudes as Citized by Arabian Commentators, Rotterdam 1950.pl_PL
dc.referencesRebirth, reform and Resilence. Universities in Transition 1300–1700, ed. by J.M. Kittelson, P.J. Transue, Columbus, Ohio 1984.pl_PL
dc.referencesRigg A.G., Two Latin Poems against the Friars, „Medieval Studies” 1968, vol. 30, s. 107–120.pl_PL
dc.referencesSarnowsky J., The Oxford Calculatores, [w:] Contemporary philosophy. A new survey, vol. 1, Amsterdam 1990, s. 473–480.pl_PL
dc.referencesScience in the Middle Ages, ed. by D. Lindberg, Chicago 1978.pl_PL
dc.referencesScientific Change, ed. by A.C. Crombie, London 1963.pl_PL
dc.referencesSerene E.F., Robert Grosseteste on Induction and Demonstrative Science, „Synthese” 1979, vol. 40, s. 95–115.pl_PL
dc.referencesSpade P.V. The Cambridge Companion to Ockham, Cambridge 1999.pl_PL
dc.referencesStudies in Medieval Natural Philosophy, ed. by S. Caroti, Firenze 1989.pl_PL
dc.referencesStump E., Obligations: from the Beginning to the Early Fourteenth Century, [w:] The Cambridge History of Later Medieval Philosophy. From the Rediscovery of Aristotle to the Desintegration of Scholasticism, ed. by N. Kretzmann, A. Kenny, J. Pinborg, Cambridge 1982, s. 239–332..pl_PL
dc.referencesSylla E.D., Walter Burley’s „Tractatus primus”: Evidence Concerning the Relations of Disputations and Written Works, „Franciscan Studies” 1984, vol. 22, s. 257–273.pl_PL
dc.referencesSylla E.D., Aristotelian Commentaries and Scientific Channge: The Parisian Nominalism on the Cause of the Natural Motion of Inanimate Bodies, „Vivarium” 1993, vol. XXXI, s. 37–83.pl_PL
dc.referencesSylla E.D., Medieval Quantifications of Qualities: The ‘Merton School’. „Archives for History of Exact Sciences” 1971, vol. 8, s. 7–39.pl_PL
dc.referencesSylla E.D., The Oxford Calculators and the Mathematics of Motion 1320 – 1350. Physics and Measurement by Latitudes, New York 1991.pl_PL
dc.referencesSylla E.D., Transmission of the New Physics of the Fourteenth century from England to the Continent, [w:], La nouvelle Physique de XIVe siècle ed. by S. Caroti, P. Soufrin, Frenze 1997, s. 65–110.pl_PL
dc.referencesSylla E.D., Walter Burley, [w:] Routledge Encyclopedia for Philosophy, vol. 1, London 1999, s. 887–893.pl_PL
dc.referencesSzabo A., The Beginnings of Greek Mathematics, Budapest 1978.pl_PL
dc.referencesTempus, Aevum, Aeternitas. La concettualizzazione del tempo nel pensiero tardomedievale, ed. de L. Cova. G. Alliney, Firenze 2000.pl_PL
dc.referencesText and Contexts in Ancient and Medieval Science. Studies on the Occasion of John E. Murdoch’s seventieth Birthday, ed. by E.D. Sylla, M. McVaugh, Leiden 1997.pl_PL
dc.referencesThorndike L., History of Magic and Experimental Science, vol. 1–3, New York 1923–1934.pl_PL
dc.referencesTransformation and Tradition in the Sciences. Essays in honor of I. Bernard Cohen, ed. by E. Mendelson, Cambridge 1984.pl_PL
dc.referencesWalsh K., A Fourteenth-Century Scholar and Primate Richard FitzRalph in Oxford, Avignon and Armagh, Oxford 1981.pl_PL
dc.referencesWeisheipl J.A., Curriculum of the Faculty of Arts at Oxford in the Early Fourteenth Century, „Medieval Studies” 1964, vol. 26, s. 143–185.pl_PL
dc.referencesWeisheipl J.A., Developments in the Arts Curriculum at Oxford in the Early Fourteenth Century, „Medieval Studies” 1966, vol. 28, s. 151–175.pl_PL
dc.referencesWeisheipl J.A., Ockham and some Mertonians, „Medieval Studies” 1968, vol. 30, s. 163–213.pl_PL
dc.referencesWeisheipl J.A., Ockham and the Mertonians, [w:] The History of the University of Oxford, ed. by T.H. Aston, Oxford 1984, s. 608–658.pl_PL
dc.referencesWeisheipl J.A., Repretorium Mertonense, „Medieval Studies” 1969, vol. 31, s. 174–224pl_PL
dc.referencesWeisheipl J.A., The Concept of Scientific Knowledge in Greek Philosohy, [w:] Mélanges a’ la mémoire de Charles de Koninck, Quebec 1968, s. 487–507.pl_PL
dc.referencesWeisheipl J.A., The Development of Physical Theory in the Middle Ages, London 1959.pl_PL
dc.referencesWhitehead A.N., Nauka i świat nowożytny, tłum. M. Kozłowski, M. Pieńkowski, Kraków 1987.pl_PL
dc.referencesWilson C., William Heytesbury. Medieval Logic and the Rise of Mathematical Physics, Madison 1960.pl_PL
dc.referencesWszystko to ze zdziwienia. Antologia tekstów filozoficznych z XIII wieku, wstęp, wybór oprac. K. Krauze-Błachowicz, Warszawa 2002.pl_PL
dc.referencesWszystko to ze zdziwienia. Antologia tekstów filozoficznych z XIV wieku, wstęp, wybór, oprac. E. Jung[-Palczewska], Warszawa 2000.pl_PL
dc.identifier.doi10.18778/7969-384-9


Pliki tej pozycji

Thumbnail
Thumbnail
Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska