dc.contributor.author | Grzenda, Wioletta | |
dc.date.accessioned | 2017-11-17T14:21:56Z | |
dc.date.available | 2017-11-17T14:21:56Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 0208-6018 | |
dc.identifier.uri | http://hdl.handle.net/11089/23294 | |
dc.description.abstract | In this paper, the duration of the first job of young people aged 18–30 has been analyzed. The aim of the work is to find the distribution which best describes the investigated phenomenon. Bayesian accelerated failure time models have been used for modelling. The use of the Bayesian approach made it possible to extend past research. More precisely, prior information could be included in the study, which let us compare distributions of model parameters. Moreover, the comparison of explanatory power of competing models based on the Bayesian theory was possible. The duration of the first job for men and women was also compared using the abovementioned methods. | en_GB |
dc.description.abstract | W niniejszym artykule poddano analizie czas trwania pierwszej pracy osób w wieku 18–30 lat. Celem badania jest znalezienie rozkładu, który najlepiej opisuje badane zjawisko. W modelowaniu wykorzystano modele przyspieszonej porażki AFT w ujęciu Bayesowskim. Wykorzystanie podejścia Bayesowskiego rozszerzyło dotychczasowe badania przez możliwość uwzględnienia w badaniu informacji a priori oraz umożliwiło porównywanie rozkładów parametrów modeli. Ponadto dało możliwość porównania mocy wyjaśniającej konkurencyjnych modeli na gruncie teorii Bayesowskiej. Z wykorzystaniem zaproponowanych metod porównano czas trwania pierwszej pracy dla kobiet i mężczyzn. | pl_PL |
dc.description.sponsorship | This study has been prepared as part of the project granted by the National Science Centre, Poland entitled “The modeling of parallel family and occupational careers with Bayesian methods” (2015/17/B/HS4/02064). | en_GB |
dc.language.iso | en | en_GB |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | en_GB |
dc.relation.ispartofseries | Acta Universitatis Lodziensis. Folia Oeconomica;330 | |
dc.subject | parametric survival models | en_GB |
dc.subject | AFT models | en_GB |
dc.subject | the Bayesian approach | en_GB |
dc.subject | MCMC | en_GB |
dc.subject | employment | en_GB |
dc.subject | parametryczne modele przeżycia | pl_PL |
dc.subject | modele AFT | pl_PL |
dc.subject | podejście Bayesowskie | pl_PL |
dc.subject | MCMC | pl_PL |
dc.subject | zatrudnienie | pl_PL |
dc.title | Modelling the Duration of the First Job Using Bayesian Accelerated Failure Time Models | en_GB |
dc.title.alternative | Modelowanie czasu trwania pierwszej pracy z wykorzystaniem Bayesowskich modeli przyspieszonej porażki AFT | pl_PL |
dc.type | Article | en_GB |
dc.rights.holder | © Copyright by Authors, Łódź 2017; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2017 | en_GB |
dc.page.number | [19]-38 | |
dc.contributor.authorAffiliation | Warsaw School of Economics, Institute of Statistics and Demography, Event History and Multilevel Analysis Unit | |
dc.identifier.eissn | 2353-7663 | |
dc.references | Akaike H. (1973), Information theory and an extension of the maximum likelihood principle, [in:] B.N. Petrov, F. Csaki (eds.), Second International Symposium on Information Theory, Akademiai Kiado, Budapest. | pl_PL |
dc.references | Allison P.D. (1995), Survival Analysis Using the SAS®: A Practical Guide, 2nd ed., SAS Institute Inc., Cary. | pl_PL |
dc.references | Ando T. (2010), Bayesian Model Selection and Statistical Modeling, CRC Press, Boca Raton. | pl_PL |
dc.references | Bolstad W.M. (2007), Introduction to Bayesian Statistics, Wiley Sons, USA. | pl_PL |
dc.references | Casella G., George E.I. (1992), Explaining the Gibbs sample, “The American Statistician”, no. 46, pp. 167–174. | pl_PL |
dc.references | Central Statistical Office (2014), Labour Force Survey (LFS). | pl_PL |
dc.references | Congdon P. (2006), Bayesian Statistical Modelling, 2nd ed., John Wiley Sons Inc., United Kingdom. | pl_PL |
dc.references | Cox D.R. (1972), Regression models and life‑tables, “Journal of the Royal Statistical Society”, Series B, vol. 34, no. 2, pp. 187–220. | pl_PL |
dc.references | Drobnič S., Frątczak E. (2001), Employment Patterns of Parried Women in Poland, Careers of Couples in Contemporary Society, Oxford University Press, New York. | pl_PL |
dc.references | Gelman A., Carlin J.B., Stern H.S., Rubin D.B. (2000), Bayesian Data Analysis, Chapman Hall/ CRC, London. | pl_PL |
dc.references | Generations and Gender Programme, http://www.ggp‑i.org/ [accessed: 1.09.2016]. | pl_PL |
dc.references | Gilks W., Wild P. (1992), Adaptive rejection sampling for Gibbs sampling, “Applied Statistics”, no. 41, pp. 337–348. | pl_PL |
dc.references | Gill J. (2008), Bayesian Method: a Social and Behavioral Sciences Approach, Chapman Hall/ CRC, London. | pl_PL |
dc.references | Grzenda W. (2013), The significance of prior information in Bayesian parametric survival models, “Acta Universitatis Lodziensis. Folia Oeconomica”, no. 285, pp. 31–39. | pl_PL |
dc.references | Ibrahim J.G., Chen M‑H., Sinha D. (2001), Bayesian Survival Analysis, Springer‑Verlag, New York. | pl_PL |
dc.references | Jeffreys H. (1961), Theory of Probability, 3rd ed., Oxford University Press, Oxford. | pl_PL |
dc.references | Kalbfleisch J.D., Prentice R.L. (2002), The Statistical Analysis of Failure Time Data, 2nd ed., Wiley Series in Probability and Statistics, Hoboken, New Jersey. | pl_PL |
dc.references | Kass R.E., Raftery A.E. (1995), Bayes factors, “Journal of the American Statistical Association”, no. 90, pp. 773–795. | pl_PL |
dc.references | Kim S.W., Ibrahim J.G. (2000), On Bayesian inference for parametric proportional hazards models using noninformative priors, “Lifetime Data Analysis”, no. 6, pp. 331–341. | pl_PL |
dc.references | Lancaster T. (1979), Econometric methods for the duration of unemployment, “Econometrica”, vol. 47, no. 4, pp. 939–956. | pl_PL |
dc.references | Landmesser J. (2013), The Use of Methods of Analysis of the Duration of the Labour Force Survey in Poland, Warsaw University of Life Sciences, Warsaw. | pl_PL |
dc.references | Lawless J.L. (2003), Statistical Models and Methods for Lifetime Data, Wiley‑Interscience, Hoboken, New Jersey. | pl_PL |
dc.references | Lee E.T., Wang J.W. (2003), Statistical Methods for Survival Data Analysis, John Wiley Sons, Inc., Hoboken, New Jersey. | pl_PL |
dc.references | Marzec J. (2008), Bayesian Models of Variable Quality and Limited Research Loans in Default, Cracow University of Economics, Cracow. | pl_PL |
dc.references | Newton M.A., Raftery A.E. (1994), Approximate Bayesian inference by the weighted likelihood bootstrap, “Journal of the Royal Statistical Society”, Series B (Methodological), vol. 56, no. 1, pp. 3–48. | pl_PL |
dc.references | Osiewalski J. (2001), Bayesian Econometrics Applications, Cracow University of Economics, Cracow. | pl_PL |
dc.references | Raftery A. (1996), Bayesian model selection in social research, “Sociological Methodology”, no. 25, pp. 111–163. | pl_PL |
dc.references | Spiegelhalter D., Best N., Carlin B., Linde A. van der (2002), Bayesian measures of model complexity and fit, “Journal of the Royal Statistical Society”, Series B, no. 64, pp. 583–639. | pl_PL |
dc.references | Walker S., Mallick B.K. (1999), A Bayesian semiparametric accelerated failure time model, “Biometrics”, no. 55, pp. 477–483. | pl_PL |
dc.references | Wei L.J. (1992), The accelerated failure time model: A useful alternative to the Cox regression model in survival analysis, “Statistics in Medicine”, no. 11, pp. 1871–1879. | pl_PL |
dc.references | Wilks S.S. (1935), The likelihood test of independence in contingency tables, “The Annals of Mathematical Statistics”, no. 6, pp. 190–196. | pl_PL |
dc.references | Wilks S.S. (1938), The large‑sample distribution of the likelihood ratio for testing composite hypotheses, “The Annals of Mathematical Statistics”, no. 9, p. 60–62. | pl_PL |
dc.contributor.authorEmail | wgrzend@sgh.waw.pl | |
dc.identifier.doi | 10.18778/0208-6018.330.02 | |
dc.relation.volume | 4 | en_GB |
dc.subject.jel | J630 | |