Pokaż uproszczony rekord

dc.contributor.authorGrzenda, Wioletta
dc.date.accessioned2017-11-17T14:21:56Z
dc.date.available2017-11-17T14:21:56Z
dc.date.issued2017
dc.identifier.issn0208-6018
dc.identifier.urihttp://hdl.handle.net/11089/23294
dc.description.abstractIn this paper, the duration of the first job of young people aged 18–30 has been analyzed. The aim of the work is to find the distribution which best describes the investigated phenomenon. Bayesian accelerated failure time models have been used for modelling. The use of the Bayesian approach made it possible to extend past research. More precisely, prior information could be included in the study, which let us compare distributions of model parameters. Moreover, the comparison of explanatory power of competing models based on the Bayesian theory was possible. The duration of the first job for men and women was also compared using the abovementioned methods.en_GB
dc.description.abstractW niniejszym artykule poddano analizie czas trwania pierwszej pracy osób w wieku 18–30 lat. Celem badania jest znalezienie rozkładu, który najlepiej opisuje badane zjawisko. W modelowaniu wykorzystano modele przyspieszonej porażki AFT w ujęciu Bayesowskim. Wykorzystanie podejścia Bayesowskiego rozszerzyło dotychczasowe badania przez możliwość uwzględnienia w badaniu informacji a priori oraz umożliwiło porównywanie rozkładów parametrów modeli. Ponadto dało możliwość porównania mocy wyjaśniającej konkurencyjnych modeli na gruncie teorii Bayesowskiej. Z wykorzystaniem zaproponowanych metod porównano czas trwania pierwszej pracy dla kobiet i mężczyzn.pl_PL
dc.description.sponsorshipThis study has been prepared as part of the project granted by the National Science Centre, Poland entitled “The modeling of parallel family and occupational careers with Bayesian methods” (2015/17/B/HS4/02064).en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Oeconomica;330
dc.subjectparametric survival modelsen_GB
dc.subjectAFT modelsen_GB
dc.subjectthe Bayesian approachen_GB
dc.subjectMCMCen_GB
dc.subjectemploymenten_GB
dc.subjectparametryczne modele przeżyciapl_PL
dc.subjectmodele AFTpl_PL
dc.subjectpodejście Bayesowskiepl_PL
dc.subjectMCMCpl_PL
dc.subjectzatrudnieniepl_PL
dc.titleModelling the Duration of the First Job Using Bayesian Accelerated Failure Time Modelsen_GB
dc.title.alternativeModelowanie czasu trwania pierwszej pracy z wykorzystaniem Bayesowskich modeli przyspieszonej porażki AFTpl_PL
dc.typeArticleen_GB
dc.rights.holder© Copyright by Authors, Łódź 2017; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2017en_GB
dc.page.number[19]-38
dc.contributor.authorAffiliationWarsaw School of Economics, Institute of Statistics and Demography, Event History and Multilevel Analysis Unit
dc.identifier.eissn2353-7663
dc.referencesAkaike H. (1973), Information theory and an extension of the maximum likelihood principle, [in:] B.N. Petrov, F. Csaki (eds.), Second International Symposium on Information Theory, Aka­demiai Kiado, Budapest.pl_PL
dc.referencesAllison P.D. (1995), Survival Analysis Using the SAS®: A Practical Guide, 2nd ed., SAS Institute Inc., Cary.pl_PL
dc.referencesAndo T. (2010), Bayesian Model Selection and Statistical Modeling, CRC Press, Boca Raton.pl_PL
dc.referencesBolstad W.M. (2007), Introduction to Bayesian Statistics, Wiley Sons, USA.pl_PL
dc.referencesCasella G., George E.I. (1992), Explaining the Gibbs sample, “The American Statistician”, no. 46, pp. 167–174.pl_PL
dc.referencesCentral Statistical Office (2014), Labour Force Survey (LFS).pl_PL
dc.referencesCongdon P. (2006), Bayesian Statistical Modelling, 2nd ed., John Wiley Sons Inc., United Kingdom.pl_PL
dc.referencesCox D.R. (1972), Regression models and life‑tables, “Journal of the Royal Statistical Society”, Series B, vol. 34, no. 2, pp. 187–220.pl_PL
dc.referencesDrobnič S., Frątczak E. (2001), Employment Patterns of Parried Women in Poland, Careers of Couples in Contemporary Society, Oxford University Press, New York.pl_PL
dc.referencesGelman A., Carlin J.B., Stern H.S., Rubin D.B. (2000), Bayesian Data Analysis, Chapman Hall/ CRC, London.pl_PL
dc.referencesGenerations and Gender Programme, http://www.ggp‑i.org/ [accessed: 1.09.2016].pl_PL
dc.referencesGilks W., Wild P. (1992), Adaptive rejection sampling for Gibbs sampling, “Applied Statistics”, no. 41, pp. 337–348.pl_PL
dc.referencesGill J. (2008), Bayesian Method: a Social and Behavioral Sciences Approach, Chapman Hall/ CRC, London.pl_PL
dc.referencesGrzenda W. (2013), The significance of prior information in Bayesian parametric survival models, “Acta Universitatis Lodziensis. Folia Oeconomica”, no. 285, pp. 31–39.pl_PL
dc.referencesIbrahim J.G., Chen M‑H., Sinha D. (2001), Bayesian Survival Analysis, Springer‑Verlag, New York.pl_PL
dc.referencesJeffreys H. (1961), Theory of Probability, 3rd ed., Oxford University Press, Oxford.pl_PL
dc.referencesKalbfleisch J.D., Prentice R.L. (2002), The Statistical Analysis of Failure Time Data, 2nd ed., Wiley Series in Probability and Statistics, Hoboken, New Jersey.pl_PL
dc.referencesKass R.E., Raftery A.E. (1995), Bayes factors, “Journal of the American Statistical Association”, no. 90, pp. 773–795.pl_PL
dc.referencesKim S.W., Ibrahim J.G. (2000), On Bayesian inference for parametric proportional hazards models using noninformative priors, “Lifetime Data Analysis”, no. 6, pp. 331–341.pl_PL
dc.referencesLancaster T. (1979), Econometric methods for the duration of unemployment, “Econometrica”, vol. 47, no. 4, pp. 939–956.pl_PL
dc.referencesLandmesser J. (2013), The Use of Methods of Analysis of the Duration of the Labour Force Survey in Poland, Warsaw University of Life Sciences, Warsaw.pl_PL
dc.referencesLawless J.L. (2003), Statistical Models and Methods for Lifetime Data, Wiley‑Interscience, Hoboken, New Jersey.pl_PL
dc.referencesLee E.T., Wang J.W. (2003), Statistical Methods for Survival Data Analysis, John Wiley Sons, Inc., Hoboken, New Jersey.pl_PL
dc.referencesMarzec J. (2008), Bayesian Models of Variable Quality and Limited Research Loans in Default, Cracow University of Economics, Cracow.pl_PL
dc.referencesNewton M.A., Raftery A.E. (1994), Approximate Bayesian inference by the weighted likelihood bootstrap, “Journal of the Royal Statistical Society”, Series B (Methodological), vol. 56, no. 1, pp. 3–48.pl_PL
dc.referencesOsiewalski J. (2001), Bayesian Econometrics Applications, Cracow University of Economics, Cracow.pl_PL
dc.referencesRaftery A. (1996), Bayesian model selection in social research, “Sociological Methodology”, no. 25, pp. 111–163.pl_PL
dc.referencesSpiegelhalter D., Best N., Carlin B., Linde A. van der (2002), Bayesian measures of model complexity and fit, “Journal of the Royal Statistical Society”, Series B, no. 64, pp. 583–639.pl_PL
dc.referencesWalker S., Mallick B.K. (1999), A Bayesian semiparametric accelerated failure time model, “Biometrics”, no. 55, pp. 477–483.pl_PL
dc.referencesWei L.J. (1992), The accelerated failure time model: A useful alternative to the Cox regression model in survival analysis, “Statistics in Medicine”, no. 11, pp. 1871–1879.pl_PL
dc.referencesWilks S.S. (1935), The likelihood test of independence in contingency tables, “The Annals of Mathematical Statistics”, no. 6, pp. 190–196.pl_PL
dc.referencesWilks S.S. (1938), The large‑sample distribution of the likelihood ratio for testing composite hypotheses, “The Annals of Mathematical Statistics”, no. 9, p. 60–62.pl_PL
dc.contributor.authorEmailwgrzend@sgh.waw.pl
dc.identifier.doi10.18778/0208-6018.330.02
dc.relation.volume4en_GB
dc.subject.jelJ630


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord