dc.contributor.author | Fortuniak, Krzysztof | |
dc.contributor.author | Pawlak, Włodzimierz | |
dc.contributor.editor | Fortuniak, Krzysztof | |
dc.date.accessioned | 2017-01-12T11:54:35Z | |
dc.date.available | 2017-01-12T11:54:35Z | |
dc.date.issued | 2016 | |
dc.identifier.isbn | 978-83-944039-0-4 | |
dc.identifier.uri | http://hdl.handle.net/11089/20355 | |
dc.description.abstract | The basic methods of statistical data quality verification and source area calculation for turbulent
fluxes are presented and discussed in the paper. The empirical base of analysis were results of three
years (2013–2015) eddy-covariance measurements of energy balance and turbulent fluxes of
greenhouse gases (water vapor, carbon dioxide and methane) conducted near to the Kopytkowo village
in Biebrza National Park. We analyzed three stationary tests and tests for well-developed turbulence. It
is shown that the automatic application of the tests can lead to the rejection of valid values as well as
approval of unrealistic values. A particular care should be taken using tests for the condition of a welldeveloped
turbulence. The methods of determining the source area of turbulent fluxes were discussed.
It has been shown that different analytical algorithms lead to similar results and that in the case
Kopytkowo the turbulent flux source area covers 100–150 thousand squared meters covered with
typical for Biebrza wetlands vegetation. | pl_PL |
dc.description.abstract | W pracy przedstawiono i przedyskutowano podstawowe metody statystycznej weryfikacji jakości
danych strumieni turbulencyjnych oraz wyznaczania ich obszaru źródłowego. Bazę empiryczną analiz
stanowiły wyniki trzyletnich (2013–2015) pomiarów bilansu cieplnego i strumieni gazów
cieplarnianych (pary wodnej, dwutlenku węgla i metanu) prowadzone metodą kowariancji wirów
w okolicy wsi Kopytkowo (Biebrzański Park Narodowy). Analizie poddano trzy testy stacjonarności
oraz testy dobrze rozwiniętej turbulencji. Pokazano, że automatyczne stosowanie testów może
prowadzić zarówno do odrzucenia poprawnych wartości jak i do przyjęcia wartości nierealnych.
Szczególnie uważnie powinny być stosowane testy dotyczące warunku dobrze rozwiniętej turbulencji.
Omówiono metody wyznaczania obszaru źródłowego strumieni turbulencyjnych. Pokazano, że różne
algorytmy analityczne prowadzą do zbliżonych rezultatów oraz że w przypadku Kopytkowa obszar
źródłowy obejmuje powierzchnię 100–150 tys. m2 pokrytą typową dla bagien biebrzańskich
roślinnością. | pl_PL |
dc.description.sponsorship | Praca wykonana w ramach projektu “Bilans absorpcji i emisji gazów cieplarnianych (metanu,
dwutlenku węgla i pary wodnej) na obszarach bagiennych (studium Biebrzańskiego Parku
Narodowego)”sfinansowanego ze środków Narodowego Centrum Nauki przyznanych na podstawie
decyzji numer DECR2011/01/B/ST10/07550. | pl_PL |
dc.language.iso | pl | pl_PL |
dc.publisher | Katedra Meteorologii i Klimatologii WNG UŁ | pl_PL |
dc.relation.ispartof | Wybrane problemy pomiarów wymiany gazowej pomiędzy powierzchnią ziemi a atmosferą na terenach bagiennych. Doświadczenia trzyletnich pomiarów w Biebrzańskim Parku Narodowym; | |
dc.rights | Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/pl/ | * |
dc.subject | eddy-covariance method | pl_PL |
dc.subject | stationarity tests | pl_PL |
dc.subject | footprint function | pl_PL |
dc.subject | Biebrza National Park | pl_PL |
dc.subject | metoda kowariancji wirów | pl_PL |
dc.subject | testy stacjonarności | pl_PL |
dc.subject | funkcja śladu | pl_PL |
dc.subject | gazy cieplarniane | pl_PL |
dc.subject | Biebrzański Park Narodowy | pl_PL |
dc.title | Metody weryfikacji jakości danych i określania obszaru źródłowego strumieni turbulencyjnych | pl_PL |
dc.title.alternative | The methods of data quality control and source area calculations for turbulent fluxes | pl_PL |
dc.type | Book chapter | pl_PL |
dc.rights.holder | Copyright by Katedra Meteorologii i Klimatologii WNG UŁ, Łódź 2016 | pl_PL |
dc.page.number | [67]-94 | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Łódzki, Wydział Nauk Geograficznych, Katedra Meteorologii i Klimatologii | pl_PL |
dc.references | Affre, C., Lopez, A., Carrara, A., Druilhet, A., Fontan, J., 2000, The analysis of energy and ozone flux data from the LANDES experiment, Atmos. Environ., 34, 803–821. | pl_PL |
dc.references | Andreas, E.L., Hill, R.J., Gosz, J.R., Moore, D.I., Otto, W.D., Sarma, A.D., 1998, Statistics of surfacelayer turbulence over terrain with metre-scale heterogeneity, Boundary-Layer Meteorol., 86, 379–408. | pl_PL |
dc.references | Aubinet, M., Feigenwinter, C., Heinesch, B., Laffineur, Q., Papale, D., Reichstein, M., Rinne, J., Gorsel, E., 2012, Nighttime Flux Correction, w: M. Aubinet, T. Vesala, D. Papale (red.), Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer, Dordrecht, Heidelberg, London, New York, 133–157. | pl_PL |
dc.references | Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., Kowalski, A.S., Martin, P.H., Berbigier, P., Bernhofer, C., Clement, R., Elbers, J., Granier, A., Grünwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., Vesala, T., 2000, Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology, Adv. Ecol. Res., 30, 113–175. | pl_PL |
dc.references | Barr, J.G., Engel, V., Fuentes, J.D., Zieman, J.C., O’Halloran, T.L., Smith, T.J. III, Anderson, G.H., 2010, Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park, J. Geophys. Res., 115, G02020. | pl_PL |
dc.references | Cai, X.H., Leclerc, M.Y., 2007, Forward-in-time and backward-in-time dispersion in the convective boundary layer: the concentration footprint, Boundary-Layer Meteorol., 123, 201–218. | pl_PL |
dc.references | Dutaur, L., Cieslik, S., Carrara, A., Lopez, A., 1999. The detection of nonstationarity in the determination of deposition fluxes. w: P.M. Borrell, P. Borrell (red.), Proceedings of EUROTRAC Symposium ‘98, vol. 2. WIT Press, Southampton, 171–176. | pl_PL |
dc.references | Falge, E., Baldocchi, D., Olson, R.J., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross, P., Grünwald, T., Hollinger, D., Jensen, N.-O., Katul, G., Keronen, P., Kowalski, A., Ta Lai, C., Law, B.E., Meyers, T., Moncrieff, J., Moors, E., Munger, J.W., Pilegaard, K., Rannik, U., Rebmann, C., Suyker, A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., Wofsy, S., 2001, Gap filling strategies for defensible annual sums of net ecosystem exchange, J Agr. Forest Meteorol., 107, 43–69. | pl_PL |
dc.references | Foken, T., 2008, Micrometeorology, Springer, Berlin, 306 s. | pl_PL |
dc.references | Foken, T., Göckede, M., Mauder, M., Mahrt, L., Amiro, B.D., Munger, J.W., 2004, Post-field data quality control, w: X. Lee et al. (red.), Handbook of Micrometeorology, Kluwer Acad. Pub., 181–208. | pl_PL |
dc.references | Foken, T., Leuning, R., Oncley, S. P., Mauder, M., Aubinet, M., 2012, Corrections and data quality, w: M. Aubinet, T. Vesala, D. Papale (red.), Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer, Dordrecht, Heidelberg, London, New York, 85–132. | pl_PL |
dc.references | Foken, T., Wichura, B., 1996, Tools for quality assessment of surface-based flux measurements, Agric. Forest Meteorol., 78, 83–105. | pl_PL |
dc.references | Fortuniak, K., 2010, Radiacyjne i turbulencyjne składniki bilansu cieplnego terenów zurbanizowanych na przykładzie Łodzi, Wyd. UŁ, Łódź, 232 ss. | pl_PL |
dc.references | Fortuniak, K., Pawlak, W., Siedlecki, M., 2013, Integral turbulence statistics over a central European city centre, Boundary-Layer Meteorol., 146, 257–276. | pl_PL |
dc.references | Gash, J.H.C., 1986, A note on estimating the effect of a limited fetch on micrometeorological evaporation measurements, Boundary-Layer Meteorol., 35, 409–414. | pl_PL |
dc.references | Gu, L., Falge, E., Boden, T., Baldocchi, D.D., Black, T.A., Saleska, S.R., Suni, T., Vesala, T., Wofsy, S., Xu, L., 2005, Observing threshold determination for nighttime eddy flux filtering, Agric. For. Meteorol., 128, 179–197. | pl_PL |
dc.references | Haenel, H.D., Grünhage, L., 1999, Footprint Analysis: A Closed Analytical Solution Based on Height- Dependent Profiles of Wind Speed and Eddy Diffusivity, Boundary-Layer Meteorol., 93, 395– 409. | pl_PL |
dc.references | Högström, U., 1990, Analysis of turbulence structures in the surface layer with a modified similarity formula- tion for near neutral conditions, J. Atmos. Sci., 47, 1949–1972. | pl_PL |
dc.references | Horst, T.W., 1999, The footprint for estimation of atmosphere-surface exchange fluxes by profile techniques, Boundary-Layer Meteorol., 90, 171–188. | pl_PL |
dc.references | Horst, T.W., 2001, Comments on “Footprint analysis: a closed analytical solution based on heightdependent profiles of wind speed and eddy viscosity”, by Haenel and Grünhage (1999), Boundary-Layer Meteorol., 101, 435–447. | pl_PL |
dc.references | Horst, T.W., Weil, J.C., 1992, Footprint Estimation for Scalar Flux Measurements in the Atmospheric Surface Layer, Boundary-Layer Meteorol., 59, 279–296. | pl_PL |
dc.references | Hsieh, C.I., Katul, G., Chi, T., 2000, An approximate analytical model for footprint estimation of scaler fluxes in thermally stratified atmospheric flows, Adv. Water Resour., 23, 765–772. | pl_PL |
dc.references | Hsieh, C.I., Katul, G.G., Schieldge, J., Sigmon, J.T., Knoerr, K.K., 1997, The Lagrangian stochastic model for fetch and latent heat flux estimation above uniform and non-uniform terrain, Water Resour. Res., 33, 427–438. | pl_PL |
dc.references | Jocher, G., Schulz, A., Ritter, Ch., Neuber, R., Dethloff, K., Foken, T., 2015, The Sensible Heat Flux in the Course of the Year at Ny-Ålesund, Svalbard: Characteristics of Eddy Covariance Data and Corresponding Model Results, Advances in Meteorology, vol. 2015, Article ID 852108, 16 s. | pl_PL |
dc.references | Kljun, N., Calanca, P., Rotach, M.W., Schmid. H.P., 2004, A simple para- meterisation for flux footprint predictions. Boundary-Layer Meteorology, 112, 503–523. | pl_PL |
dc.references | Kljun, N., Rotach, M.W., Schmid, H.P., 2002, A 3-D backward Lagrangian footprint model for a wide range of boundary layer stratifications, Boundary-Layer Meteorol., 103, 205–226. | pl_PL |
dc.references | Kljun, N., Calanca, P., Rotach, M.W., Schmid, H.P., 2015, A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP), Geoscientific Model Development, 8, 3695–3713. | pl_PL |
dc.references | Kormann, R., Meixner, F.X., 2001, An analytical footprint model for nonneutral stratification. Boundary-Layer Meteorol., 99, 207–224. | pl_PL |
dc.references | Leclerc, M.Y., Shen, S.H., Lamb, B., 1997, Observations and large eddy simulation modeling of footprints in the lower convective boundary layer, J. Geophys. Res., 102, 9323–9334. | pl_PL |
dc.references | Leclerc, M.Y., Thurtell, G.W., 1990, Footprint Predictions of Scalar Fluxes using a Markovian Analysis, Boundary-Layer Meteorol., 52, 247–258. | pl_PL |
dc.references | Lohou, F., Saïd, F., Lothon, M., Durand, P., Serça, D., 2010, Impact of boundary-layer processes on near-surface turbulence within the West African monsoon, Boundary-Layer Meteorol., 136, 1–23. | pl_PL |
dc.references | Mahrt, L., 1998, Flux Sampling Errors for Aircraft and Towers, J. Atmos. Oceanic Technol., 15, 416– 429. | pl_PL |
dc.references | Moffat, A.M., Papale, D., Reichstein, M., Hollinger, D.Y., Richardson, A.D., Barr, A.G., Beckstein, C., Braswell, B.H., Churkina, G., Desai, A.R., Falge, E., Gove, J.H., Heimann, M., Hui, D., Jarvis, A.J., Kattge, J., Noormets, A., Stauch, V.J., 2007, Comprehensive comparison of gapfilling techniques for eddy covariance net carbon fluxes, Agric. For. Meteorol., 147, 209–232. | pl_PL |
dc.references | Moraes, O.L.L., Acevedo, O.C., Degrazia, G.A., Anfossi, D., Da Silva, R., Anabor, V., 2005, Surface layer turbulence parameters over a complex terrain, Atmos. Environ., 39, 3103–3112. | pl_PL |
dc.references | Nemitz, E., Hargreaves, K.J., McDonald, A.G., Dorsey, J.R., Fowler, D., 2002, Micrometeorological measurements of the urban heat budget and CO2 emissions on a city scale, Environ. Sci. Tech., 36, 3139–3146. | pl_PL |
dc.references | Pahlow, M., Parlange, M., Porté-Agel, F., 2001, On Monin-Obukhov similarity in the stable atmospheric boundary layer, Boundary-Layer Meteorol., 99, 225–248. | pl_PL |
dc.references | Panofsky, H.A., Dutton, J.A., 1984, Atmospheric turbulence. Wiley, New York, 397 s. | pl_PL |
dc.references | Papale, D., 2012, Data Gap Filling, w: M. Aubinet, T. Vesala, D. Papale (red.), Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer, Dordrecht, Heidelberg, London, New York, 159–172. | pl_PL |
dc.references | Rannik, U., Sogachev, A., Foken, T., Gockede, M., Kljun, N., Leclerc, M.Y., Vesala, T., 2012, Footprint Analysis, w: M. Aubinet, T. Vesala, D. Papale (red.), Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer, Dordrecht, Heidelberg, London, New York, 211–261. | pl_PL |
dc.references | Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grunwald, T., Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., Valentini, R., 2005, On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm, Glob. Change Biol, 11, 1424–1439. | pl_PL |
dc.references | Schmid, H.P., 1994, Source areas for scalar and scalar fluxes, Boundary-Layer Meteorol., 67, 293– 318. | pl_PL |
dc.references | Schmid, H.P., 1997, Experimental design for flux measurements: matching scales of observations and fluxes, Agric. For. Meteorol., 87, 179–200. | pl_PL |
dc.references | Schmid, H.P., Oke, T.R., 1990, A model to estimate the source area contributing to turbulent exchange in the surface layer over patchy terrain, Q.J.R. Meteorol. Soc., 116, 965–988. | pl_PL |
dc.references | Schuepp, P.H., Leclerc, M.Y., MacPherson, J.I., Desjardins, R.L., 1990, Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation, Boundary-Layer Meteorol., 50, 355– 373. | pl_PL |
dc.references | Steinfeld, G., Raasch, S., Markkanen, T., 2008, Footprints in homogeneously and heterogeneously driven boundary layers derived from a Lagrangian Stochastic particle model embedded into large-eddy simulation. Boundary-Layer Meteorol., 129, 225–248. | pl_PL |
dc.references | Vesala, T., Rannik, U., Leclerc, M., Foken, T., Sabelfeld, K., 2004, Flux and concentration footprints, Agric. For. Meteorol., 127, 111–116. | pl_PL |
dc.references | Vickers, D., Mahrt, L., 1997, Quality control and flux sampling problems for tower and aircraft data, J. Atmos. Oceanic Technol., 14, 512–526. | pl_PL |
dc.references | Yamanoi, K. i in., (red.), 2012, Practical Handbook of Tower Flux Observations. Hokkaido Research Center, Forestry and Forest Products Research Institute, Sapporo, Japan, 196 s. | pl_PL |
dc.contributor.authorEmail | kfortun@uni.lodz.pl | pl_PL |