Show simple item record

dc.contributor.authorFortuniak, Krzysztof
dc.contributor.authorPawlak, Włodzimierz
dc.contributor.editorFortuniak, Krzysztof
dc.date.accessioned2017-01-12T11:54:35Z
dc.date.available2017-01-12T11:54:35Z
dc.date.issued2016
dc.identifier.isbn978-83-944039-0-4
dc.identifier.urihttp://hdl.handle.net/11089/20355
dc.description.abstractThe basic methods of statistical data quality verification and source area calculation for turbulent fluxes are presented and discussed in the paper. The empirical base of analysis were results of three years (2013–2015) eddy-covariance measurements of energy balance and turbulent fluxes of greenhouse gases (water vapor, carbon dioxide and methane) conducted near to the Kopytkowo village in Biebrza National Park. We analyzed three stationary tests and tests for well-developed turbulence. It is shown that the automatic application of the tests can lead to the rejection of valid values as well as approval of unrealistic values. A particular care should be taken using tests for the condition of a welldeveloped turbulence. The methods of determining the source area of turbulent fluxes were discussed. It has been shown that different analytical algorithms lead to similar results and that in the case Kopytkowo the turbulent flux source area covers 100–150 thousand squared meters covered with typical for Biebrza wetlands vegetation.pl_PL
dc.description.abstractW pracy przedstawiono i przedyskutowano podstawowe metody statystycznej weryfikacji jakości danych strumieni turbulencyjnych oraz wyznaczania ich obszaru źródłowego. Bazę empiryczną analiz stanowiły wyniki trzyletnich (2013–2015) pomiarów bilansu cieplnego i strumieni gazów cieplarnianych (pary wodnej, dwutlenku węgla i metanu) prowadzone metodą kowariancji wirów w okolicy wsi Kopytkowo (Biebrzański Park Narodowy). Analizie poddano trzy testy stacjonarności oraz testy dobrze rozwiniętej turbulencji. Pokazano, że automatyczne stosowanie testów może prowadzić zarówno do odrzucenia poprawnych wartości jak i do przyjęcia wartości nierealnych. Szczególnie uważnie powinny być stosowane testy dotyczące warunku dobrze rozwiniętej turbulencji. Omówiono metody wyznaczania obszaru źródłowego strumieni turbulencyjnych. Pokazano, że różne algorytmy analityczne prowadzą do zbliżonych rezultatów oraz że w przypadku Kopytkowa obszar źródłowy obejmuje powierzchnię 100–150 tys. m2 pokrytą typową dla bagien biebrzańskich roślinnością.pl_PL
dc.description.sponsorshipPraca wykonana w ramach projektu “Bilans absorpcji i emisji gazów cieplarnianych (metanu, dwutlenku węgla i pary wodnej) na obszarach bagiennych (studium Biebrzańskiego Parku Narodowego)”sfinansowanego ze środków Narodowego Centrum Nauki przyznanych na podstawie decyzji numer DECR2011/01/B/ST10/07550.pl_PL
dc.language.isoplpl_PL
dc.publisherKatedra Meteorologii i Klimatologii WNG UŁpl_PL
dc.relation.ispartofWybrane problemy pomiarów wymiany gazowej pomiędzy powierzchnią ziemi a atmosferą na terenach bagiennych. Doświadczenia trzyletnich pomiarów w Biebrzańskim Parku Narodowym;
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pl/*
dc.subjecteddy-covariance methodpl_PL
dc.subjectstationarity testspl_PL
dc.subjectfootprint functionpl_PL
dc.subjectBiebrza National Parkpl_PL
dc.subjectmetoda kowariancji wirówpl_PL
dc.subjecttesty stacjonarnościpl_PL
dc.subjectfunkcja śladupl_PL
dc.subjectgazy cieplarnianepl_PL
dc.subjectBiebrzański Park Narodowypl_PL
dc.titleMetody weryfikacji jakości danych i określania obszaru źródłowego strumieni turbulencyjnychpl_PL
dc.title.alternativeThe methods of data quality control and source area calculations for turbulent fluxespl_PL
dc.typeBook chapterpl_PL
dc.rights.holderCopyright by Katedra Meteorologii i Klimatologii WNG UŁ, Łódź 2016pl_PL
dc.page.number[67]-94pl_PL
dc.contributor.authorAffiliationUniwersytet Łódzki, Wydział Nauk Geograficznych, Katedra Meteorologii i Klimatologiipl_PL
dc.referencesAffre, C., Lopez, A., Carrara, A., Druilhet, A., Fontan, J., 2000, The analysis of energy and ozone flux data from the LANDES experiment, Atmos. Environ., 34, 803–821.pl_PL
dc.referencesAndreas, E.L., Hill, R.J., Gosz, J.R., Moore, D.I., Otto, W.D., Sarma, A.D., 1998, Statistics of surfacelayer turbulence over terrain with metre-scale heterogeneity, Boundary-Layer Meteorol., 86, 379–408.pl_PL
dc.referencesAubinet, M., Feigenwinter, C., Heinesch, B., Laffineur, Q., Papale, D., Reichstein, M., Rinne, J., Gorsel, E., 2012, Nighttime Flux Correction, w: M. Aubinet, T. Vesala, D. Papale (red.), Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer, Dordrecht, Heidelberg, London, New York, 133–157.pl_PL
dc.referencesAubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., Kowalski, A.S., Martin, P.H., Berbigier, P., Bernhofer, C., Clement, R., Elbers, J., Granier, A., Grünwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., Vesala, T., 2000, Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology, Adv. Ecol. Res., 30, 113–175.pl_PL
dc.referencesBarr, J.G., Engel, V., Fuentes, J.D., Zieman, J.C., O’Halloran, T.L., Smith, T.J. III, Anderson, G.H., 2010, Controls on mangrove forest-atmosphere carbon dioxide exchanges in western Everglades National Park, J. Geophys. Res., 115, G02020.pl_PL
dc.referencesCai, X.H., Leclerc, M.Y., 2007, Forward-in-time and backward-in-time dispersion in the convective boundary layer: the concentration footprint, Boundary-Layer Meteorol., 123, 201–218.pl_PL
dc.referencesDutaur, L., Cieslik, S., Carrara, A., Lopez, A., 1999. The detection of nonstationarity in the determination of deposition fluxes. w: P.M. Borrell, P. Borrell (red.), Proceedings of EUROTRAC Symposium ‘98, vol. 2. WIT Press, Southampton, 171–176.pl_PL
dc.referencesFalge, E., Baldocchi, D., Olson, R.J., Anthoni, P., Aubinet, M., Bernhofer, C., Burba, G., Ceulemans, R., Clement, R., Dolman, H., Granier, A., Gross, P., Grünwald, T., Hollinger, D., Jensen, N.-O., Katul, G., Keronen, P., Kowalski, A., Ta Lai, C., Law, B.E., Meyers, T., Moncrieff, J., Moors, E., Munger, J.W., Pilegaard, K., Rannik, U., Rebmann, C., Suyker, A., Tenhunen, J., Tu, K., Verma, S., Vesala, T., Wilson, K., Wofsy, S., 2001, Gap filling strategies for defensible annual sums of net ecosystem exchange, J Agr. Forest Meteorol., 107, 43–69.pl_PL
dc.referencesFoken, T., 2008, Micrometeorology, Springer, Berlin, 306 s.pl_PL
dc.referencesFoken, T., Göckede, M., Mauder, M., Mahrt, L., Amiro, B.D., Munger, J.W., 2004, Post-field data quality control, w: X. Lee et al. (red.), Handbook of Micrometeorology, Kluwer Acad. Pub., 181–208.pl_PL
dc.referencesFoken, T., Leuning, R., Oncley, S. P., Mauder, M., Aubinet, M., 2012, Corrections and data quality, w: M. Aubinet, T. Vesala, D. Papale (red.), Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer, Dordrecht, Heidelberg, London, New York, 85–132.pl_PL
dc.referencesFoken, T., Wichura, B., 1996, Tools for quality assessment of surface-based flux measurements, Agric. Forest Meteorol., 78, 83–105.pl_PL
dc.referencesFortuniak, K., 2010, Radiacyjne i turbulencyjne składniki bilansu cieplnego terenów zurbanizowanych na przykładzie Łodzi, Wyd. UŁ, Łódź, 232 ss.pl_PL
dc.referencesFortuniak, K., Pawlak, W., Siedlecki, M., 2013, Integral turbulence statistics over a central European city centre, Boundary-Layer Meteorol., 146, 257–276.pl_PL
dc.referencesGash, J.H.C., 1986, A note on estimating the effect of a limited fetch on micrometeorological evaporation measurements, Boundary-Layer Meteorol., 35, 409–414.pl_PL
dc.referencesGu, L., Falge, E., Boden, T., Baldocchi, D.D., Black, T.A., Saleska, S.R., Suni, T., Vesala, T., Wofsy, S., Xu, L., 2005, Observing threshold determination for nighttime eddy flux filtering, Agric. For. Meteorol., 128, 179–197.pl_PL
dc.referencesHaenel, H.D., Grünhage, L., 1999, Footprint Analysis: A Closed Analytical Solution Based on Height- Dependent Profiles of Wind Speed and Eddy Diffusivity, Boundary-Layer Meteorol., 93, 395– 409.pl_PL
dc.referencesHögström, U., 1990, Analysis of turbulence structures in the surface layer with a modified similarity formula- tion for near neutral conditions, J. Atmos. Sci., 47, 1949–1972.pl_PL
dc.referencesHorst, T.W., 1999, The footprint for estimation of atmosphere-surface exchange fluxes by profile techniques, Boundary-Layer Meteorol., 90, 171–188.pl_PL
dc.referencesHorst, T.W., 2001, Comments on “Footprint analysis: a closed analytical solution based on heightdependent profiles of wind speed and eddy viscosity”, by Haenel and Grünhage (1999), Boundary-Layer Meteorol., 101, 435–447.pl_PL
dc.referencesHorst, T.W., Weil, J.C., 1992, Footprint Estimation for Scalar Flux Measurements in the Atmospheric Surface Layer, Boundary-Layer Meteorol., 59, 279–296.pl_PL
dc.referencesHsieh, C.I., Katul, G., Chi, T., 2000, An approximate analytical model for footprint estimation of scaler fluxes in thermally stratified atmospheric flows, Adv. Water Resour., 23, 765–772.pl_PL
dc.referencesHsieh, C.I., Katul, G.G., Schieldge, J., Sigmon, J.T., Knoerr, K.K., 1997, The Lagrangian stochastic model for fetch and latent heat flux estimation above uniform and non-uniform terrain, Water Resour. Res., 33, 427–438.pl_PL
dc.referencesJocher, G., Schulz, A., Ritter, Ch., Neuber, R., Dethloff, K., Foken, T., 2015, The Sensible Heat Flux in the Course of the Year at Ny-Ålesund, Svalbard: Characteristics of Eddy Covariance Data and Corresponding Model Results, Advances in Meteorology, vol. 2015, Article ID 852108, 16 s.pl_PL
dc.referencesKljun, N., Calanca, P., Rotach, M.W., Schmid. H.P., 2004, A simple para- meterisation for flux footprint predictions. Boundary-Layer Meteorology, 112, 503–523.pl_PL
dc.referencesKljun, N., Rotach, M.W., Schmid, H.P., 2002, A 3-D backward Lagrangian footprint model for a wide range of boundary layer stratifications, Boundary-Layer Meteorol., 103, 205–226.pl_PL
dc.referencesKljun, N., Calanca, P., Rotach, M.W., Schmid, H.P., 2015, A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP), Geoscientific Model Development, 8, 3695–3713.pl_PL
dc.referencesKormann, R., Meixner, F.X., 2001, An analytical footprint model for nonneutral stratification. Boundary-Layer Meteorol., 99, 207–224.pl_PL
dc.referencesLeclerc, M.Y., Shen, S.H., Lamb, B., 1997, Observations and large eddy simulation modeling of footprints in the lower convective boundary layer, J. Geophys. Res., 102, 9323–9334.pl_PL
dc.referencesLeclerc, M.Y., Thurtell, G.W., 1990, Footprint Predictions of Scalar Fluxes using a Markovian Analysis, Boundary-Layer Meteorol., 52, 247–258.pl_PL
dc.referencesLohou, F., Saïd, F., Lothon, M., Durand, P., Serça, D., 2010, Impact of boundary-layer processes on near-surface turbulence within the West African monsoon, Boundary-Layer Meteorol., 136, 1–23.pl_PL
dc.referencesMahrt, L., 1998, Flux Sampling Errors for Aircraft and Towers, J. Atmos. Oceanic Technol., 15, 416– 429.pl_PL
dc.referencesMoffat, A.M., Papale, D., Reichstein, M., Hollinger, D.Y., Richardson, A.D., Barr, A.G., Beckstein, C., Braswell, B.H., Churkina, G., Desai, A.R., Falge, E., Gove, J.H., Heimann, M., Hui, D., Jarvis, A.J., Kattge, J., Noormets, A., Stauch, V.J., 2007, Comprehensive comparison of gapfilling techniques for eddy covariance net carbon fluxes, Agric. For. Meteorol., 147, 209–232.pl_PL
dc.referencesMoraes, O.L.L., Acevedo, O.C., Degrazia, G.A., Anfossi, D., Da Silva, R., Anabor, V., 2005, Surface layer turbulence parameters over a complex terrain, Atmos. Environ., 39, 3103–3112.pl_PL
dc.referencesNemitz, E., Hargreaves, K.J., McDonald, A.G., Dorsey, J.R., Fowler, D., 2002, Micrometeorological measurements of the urban heat budget and CO2 emissions on a city scale, Environ. Sci. Tech., 36, 3139–3146.pl_PL
dc.referencesPahlow, M., Parlange, M., Porté-Agel, F., 2001, On Monin-Obukhov similarity in the stable atmospheric boundary layer, Boundary-Layer Meteorol., 99, 225–248.pl_PL
dc.referencesPanofsky, H.A., Dutton, J.A., 1984, Atmospheric turbulence. Wiley, New York, 397 s.pl_PL
dc.referencesPapale, D., 2012, Data Gap Filling, w: M. Aubinet, T. Vesala, D. Papale (red.), Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer, Dordrecht, Heidelberg, London, New York, 159–172.pl_PL
dc.referencesRannik, U., Sogachev, A., Foken, T., Gockede, M., Kljun, N., Leclerc, M.Y., Vesala, T., 2012, Footprint Analysis, w: M. Aubinet, T. Vesala, D. Papale (red.), Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer, Dordrecht, Heidelberg, London, New York, 211–261.pl_PL
dc.referencesReichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grunwald, T., Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., Valentini, R., 2005, On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm, Glob. Change Biol, 11, 1424–1439.pl_PL
dc.referencesSchmid, H.P., 1994, Source areas for scalar and scalar fluxes, Boundary-Layer Meteorol., 67, 293– 318.pl_PL
dc.referencesSchmid, H.P., 1997, Experimental design for flux measurements: matching scales of observations and fluxes, Agric. For. Meteorol., 87, 179–200.pl_PL
dc.referencesSchmid, H.P., Oke, T.R., 1990, A model to estimate the source area contributing to turbulent exchange in the surface layer over patchy terrain, Q.J.R. Meteorol. Soc., 116, 965–988.pl_PL
dc.referencesSchuepp, P.H., Leclerc, M.Y., MacPherson, J.I., Desjardins, R.L., 1990, Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation, Boundary-Layer Meteorol., 50, 355– 373.pl_PL
dc.referencesSteinfeld, G., Raasch, S., Markkanen, T., 2008, Footprints in homogeneously and heterogeneously driven boundary layers derived from a Lagrangian Stochastic particle model embedded into large-eddy simulation. Boundary-Layer Meteorol., 129, 225–248.pl_PL
dc.referencesVesala, T., Rannik, U., Leclerc, M., Foken, T., Sabelfeld, K., 2004, Flux and concentration footprints, Agric. For. Meteorol., 127, 111–116.pl_PL
dc.referencesVickers, D., Mahrt, L., 1997, Quality control and flux sampling problems for tower and aircraft data, J. Atmos. Oceanic Technol., 14, 512–526.pl_PL
dc.referencesYamanoi, K. i in., (red.), 2012, Practical Handbook of Tower Flux Observations. Hokkaido Research Center, Forestry and Forest Products Research Institute, Sapporo, Japan, 196 s.pl_PL
dc.contributor.authorEmailkfortun@uni.lodz.plpl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska
Except where otherwise noted, this item's license is described as Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska