Pokaż uproszczony rekord

dc.contributor.authorStelmach, Jacek
dc.date.accessioned2013-06-04T15:42:31Z
dc.date.available2013-06-04T15:42:31Z
dc.date.issued2012
dc.identifier.issn0208-6018
dc.identifier.urihttp://hdl.handle.net/11089/1885
dc.description.abstractAn indication of correlation between dependent variable and predictors is a crucial point in building statistical regression model. The test of Pearson correlation coefficient – with relatively good power – needs to fulfill the assumption about normal distribution. In other cases only non-parametric tests can be used. This article presents a possibility and advantages of permutation tests with the discussion about proposed test statistics. The power of proposed tests was estimated on the basis of Monte Carlo experiments. The investigations were carried out for real data – a sample of refinery process parameters, where the indication of changes in correlation, even for sample with small size is very important. It creates an opportunity to react to changes and update statistical models quickly and keep acceptable quality of predictionpl_PL
dc.language.isoenpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofseriesActa Universitatis Lodziensis, Folia Oeconomica;269
dc.subjectpermutation testspl_PL
dc.subjectData Miningpl_PL
dc.subjectcorrelation analysispl_PL
dc.subjectbatch processpl_PL
dc.subjectMonte Carlopl_PL
dc.titleUsing Permutation Tests in Multiple Correlation Investigationpl_PL
dc.title.alternativeWykorzystanie testu permutacyjnego w badaniach korelacji wielowymiarowejpl_PL
dc.typeArticlepl_PL
dc.page.number73-81
dc.contributor.authorAffiliationUniwersytet Ekonomiczny w Katowicach; Wydział Zarządzania; Katedra Statystyki


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord