Pokaż uproszczony rekord

dc.contributor.authorBednarska, Kaja
dc.date.accessioned2016-07-04T10:47:09Z
dc.date.available2016-07-04T10:47:09Z
dc.date.issued2016
dc.identifier.urihttp://hdl.handle.net/11089/18617
dc.description.abstractThe present work is a methodological study on different methods of proving cut eliminability in the framework of hypersequent calculi. In particular we provide axiomatic and semantical characterization of modal logic S5 which will serve as a running example of logic for which several solutions were provided. A problem of cut rule and its elimination will be discussed in general and we will show why this result fails to hold for standard sequent calculus for S5. We will introduce hypersequent calculi and characterize several solutions provided for S5 in this setting. Also we will illustrate different methods of proof of cut elimination in hypersequent calculi such a semantical way of proving a system cut-free and a syntactical proof of cut elimination, a general strategy of proof for hyperseunet calculi. Finally we brifly describe a new approach to hypersequents which is based on their interpretation as finite lists of sequents.pl_PL
dc.language.isoenpl_PL
dc.subjectcut eliminationpl_PL
dc.subjecthypersequent calculipl_PL
dc.subjectproof theorypl_PL
dc.titleHypersequent Calculi - Theory and Applicationpl_PL
dc.typePhD/Doctoral Dissertationpl_PL
dc.page.number94pl_PL
dc.contributor.authorAffiliationUniwersytet Łódzki, Katerda Logiki i Metodologii Naukpl_PL
dc.contributor.authorEmailkaja.bednarska 88@gmail.compl_PL
dc.dissertation.directorIndrzejczak, Andrzej
dc.dissertation.reviewerŁukowski, Piotr
dc.dissertation.reviewerSurowik, Dariusz
dc.date.defence2016-07-14


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord