dc.contributor.author | Kierus, Alicja | |
dc.date.accessioned | 2016-05-20T10:35:15Z | |
dc.date.available | 2016-05-20T10:35:15Z | |
dc.date.issued | 2010 | |
dc.identifier.issn | 0208-6204 | |
dc.identifier.uri | http://hdl.handle.net/11089/18160 | |
dc.description.abstract | This paper contains constructions of some non-measurable sets,
based on classical Vitali’s and Bernstein’s constructions (see for example [6]).
This constructions probably belong to mathematical folklore, but as far as
we know they are rather hard to be found in literature. It seems that the
constructed sets can be used as examples in some interesting situations. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Łódź University Press | pl_PL |
dc.relation.ispartofseries | Acta Universitatis Lodziensis. Folia Mathematica;1 | |
dc.rights | Uznanie autorstwa-Bez utworów zależnych 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/3.0/pl/ | * |
dc.subject | Bernstein set | pl_PL |
dc.subject | Vitali set | pl_PL |
dc.subject | inner Lebesgue measure | pl_PL |
dc.subject | Steinhaus property | pl_PL |
dc.subject | Hashimoto topology | pl_PL |
dc.subject | Density topology | pl_PL |
dc.title | Some Non-Measurable Sets | pl_PL |
dc.type | Article | pl_PL |
dc.rights.holder | © 2010 for University of Łódź Press | pl_PL |
dc.page.number | 3-10 | pl_PL |
dc.contributor.authorAffiliation | Institute of Mathematics, Technical University of Łódź Wólczańska 215, 93-005 Łódź, Poland | pl_PL |
dc.references | M. Balcerzak, E. Kotlicka, Steinhaus property for products of ideals, Publ. Math. Debrecen 63, 1-2 (2003), 235-248. | pl_PL |
dc.references | H. Hashimoto, On the ∗ topology and its application, Fund. Math. 91 (1976), pp. 5-10. | pl_PL |
dc.references | Z. Kominek, On an equivalent form of a Steinhaus’s theorem, Mathematica (Cluj) 30 (53), 1 (1988), pp. 25-27. | pl_PL |
dc.references | M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, PWN, Warszawa-Katowice, 1985. | pl_PL |
dc.references | S. Piccard, Sur les ensembles de distances de ensambles de points d’u espace Euclidean, Mem. Univ. Neuchatel 13 (1939). | pl_PL |
dc.references | J. C. Oxtoby, Measure and Category, Springer-Verlag, Berlin, 1987. | pl_PL |
dc.references | H. Steinhaus, Sur les distances des points des ensambles de measure positive, Fund. Math. 1 (1920), 93-104. | pl_PL |
dc.references | W. Wilczyński, Density topologies, Handbook of Measure Theory, Ed. E. Pap. Elsevier, chapter 15 (2002), 675-702. | pl_PL |
dc.contributor.authorEmail | alicja.kierus@gmail.com | pl_PL |
dc.relation.volume | 17 | pl_PL |