Pokaż uproszczony rekord

dc.contributor.authorKierus, Alicja
dc.date.accessioned2016-05-20T10:35:15Z
dc.date.available2016-05-20T10:35:15Z
dc.date.issued2010
dc.identifier.issn0208-6204
dc.identifier.urihttp://hdl.handle.net/11089/18160
dc.description.abstractThis paper contains constructions of some non-measurable sets, based on classical Vitali’s and Bernstein’s constructions (see for example [6]). This constructions probably belong to mathematical folklore, but as far as we know they are rather hard to be found in literature. It seems that the constructed sets can be used as examples in some interesting situations.pl_PL
dc.language.isoenpl_PL
dc.publisherŁódź University Presspl_PL
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Mathematica;1
dc.rightsUznanie autorstwa-Bez utworów zależnych 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/3.0/pl/*
dc.subjectBernstein setpl_PL
dc.subjectVitali setpl_PL
dc.subjectinner Lebesgue measurepl_PL
dc.subjectSteinhaus propertypl_PL
dc.subjectHashimoto topologypl_PL
dc.subjectDensity topologypl_PL
dc.titleSome Non-Measurable Setspl_PL
dc.typeArticlepl_PL
dc.rights.holder© 2010 for University of Łódź Presspl_PL
dc.page.number3-10pl_PL
dc.contributor.authorAffiliationInstitute of Mathematics, Technical University of Łódź Wólczańska 215, 93-005 Łódź, Polandpl_PL
dc.referencesM. Balcerzak, E. Kotlicka, Steinhaus property for products of ideals, Publ. Math. Debrecen 63, 1-2 (2003), 235-248.pl_PL
dc.referencesH. Hashimoto, On the ∗ topology and its application, Fund. Math. 91 (1976), pp. 5-10.pl_PL
dc.referencesZ. Kominek, On an equivalent form of a Steinhaus’s theorem, Mathematica (Cluj) 30 (53), 1 (1988), pp. 25-27.pl_PL
dc.referencesM. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, PWN, Warszawa-Katowice, 1985.pl_PL
dc.referencesS. Piccard, Sur les ensembles de distances de ensambles de points d’u espace Euclidean, Mem. Univ. Neuchatel 13 (1939).pl_PL
dc.referencesJ. C. Oxtoby, Measure and Category, Springer-Verlag, Berlin, 1987.pl_PL
dc.referencesH. Steinhaus, Sur les distances des points des ensambles de measure positive, Fund. Math. 1 (1920), 93-104.pl_PL
dc.referencesW. Wilczyński, Density topologies, Handbook of Measure Theory, Ed. E. Pap. Elsevier, chapter 15 (2002), 675-702.pl_PL
dc.contributor.authorEmailalicja.kierus@gmail.compl_PL
dc.relation.volume17pl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa-Bez utworów zależnych 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa-Bez utworów zależnych 3.0 Polska