dc.contributor.author | Akkouchi, Mohamed | |
dc.date.accessioned | 2016-05-20T09:55:13Z | |
dc.date.available | 2016-05-20T09:55:13Z | |
dc.date.issued | 2010 | |
dc.identifier.issn | 0208-6204 | |
dc.identifier.uri | http://hdl.handle.net/11089/18157 | |
dc.description.abstract | F. Galaz-Fontes (Proc. AMS., 1998) has established a criterion
for a subset of the space of compact linear operators from a reflexive and
separable space X into a Banach space Y to be compact. F. Mayoral (Proc.
AMS., 2000) has extended this criterion to the case of Banach spaces not
containing a copy of l^1 . The purpose of this note is to give a new proof of the
result of F. Mayoral. In our proof, we use l^∞ -spaces, a well known result of
H. P. Rosenthal and L.E. Dor which characterizes the spaces without a copy
of l^1 and a recent result obtained by G. Nagy in 2007 concerining compact
sets in normed spaces. We point out that another proof of Mayoral’s result
was given by E. Serrano, C. Pineiro and J.M. Delgado (Proc. AMS., 2006) by
using a different method. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Łódź University Press | pl_PL |
dc.relation.ispartofseries | Acta Universitatis Lodziensis. Folia Mathematica;1 | |
dc.rights | Uznanie autorstwa-Bez utworów zależnych 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/3.0/pl/ | * |
dc.subject | Compact sets of compact operators | pl_PL |
dc.subject | precompact sets | pl_PL |
dc.subject | Arzela-Ascoli Theorem | pl_PL |
dc.subject | relatively compact sets in Banach spaces | pl_PL |
dc.subject | duality | pl_PL |
dc.subject | weak topologies | pl_PL |
dc.subject | Banach spaces not containing a copy of l^1 | pl_PL |
dc.title | On Compact Sets of Compact Operators on Banach Spaces not Containing a Copy of l^1 | pl_PL |
dc.type | Article | pl_PL |
dc.rights.holder | © 2010 for University of Łódź Press | pl_PL |
dc.page.number | 11-16 | pl_PL |
dc.contributor.authorAffiliation | Université Cadi Ayyad, Faculté des Sciences-Semlalia, Département de Mathéma- tiques Avenue Prince My. Abdellah, BP. 2390, Marrakech – Maroc – (Morocco) | pl_PL |
dc.references | P.M. Anselone, Compactness properties of sets of operators and their adjoints, Math. Z. 113, (1970), pp. 233-236. | pl_PL |
dc.references | N. Bourbaki, Topologie Générale, Tome II: Chapitres 5 à 10, Hermann, Paris, 1974. | pl_PL |
dc.references | J. Diestel, Sequences and Series in Banach Spaces, Springer-Verlag, New-York, 1984. | pl_PL |
dc.references | L.E. Dor, On sequences spanning a complex l^1 -space, Proc. Amer. Math. Soc. 47 (1975), pp. 515-516. | pl_PL |
dc.references | N. Dunford and J.T. Schwartz, Linear Operators. Part I: General Theory, Wiley Inter- science, New York and London, 1958. | pl_PL |
dc.references | F. Galaz-Fontes, Note on compact sets of compact operators on a reflexive and sepa- rable banach space, Proc. Amer. Math. Soc. 126, 2 (1998), pp. 587-588. | pl_PL |
dc.references | F. Mayoral, Compact sets of compact operators In absence of l^1 , Proc. Amer. Math. Soc. 129, 1, (2000), pp. 79-82. | pl_PL |
dc.references | G. Nagy, A functional analysis point of view on Arzela-Ascoli Theorem, Real Analysis Exchange 32, 2 (2007), pp. 583-586. | pl_PL |
dc.references | T.W. Palmer, Totally bounded sets of precompact linear operators, Proc. Amer. Math. Soc. 20, (1969), pp. 101-106. | pl_PL |
dc.references | H.P. Rosenthal, A characterization of Banach spaces containing l^1 , Proc. Nat. Acad. Sci. USA 71, 6 (1974), pp. 2411-2413. | pl_PL |
dc.references | E. Serrano, C. Pineiro and J.M. Delgado: Equicompact sets of operators defined on Banach spaces, Proc. Amer. Math. Soc. 134 (2006), pp. 689-695. | pl_PL |
dc.references | K. Vala, Compact set of compact operators, Ann. Acad. Sci. Fenn. Ser. A I, 351 (1964), pp. 1-9. | pl_PL |
dc.contributor.authorEmail | akkouchimo@yahoo.fr | pl_PL |
dc.relation.volume | 17 | pl_PL |