dc.contributor.author | Aab, A. | |
dc.contributor.author | Abreu, P. | |
dc.contributor.author | Aglietta, M. | |
dc.contributor.author | Giller, Maria | |
dc.contributor.author | Śmiałkowski, Andrzej | |
dc.contributor.author | Szadkowski, Zbigniew | |
dc.contributor.author | Winchen, T. | |
dc.date.accessioned | 2016-05-14T14:13:00Z | |
dc.date.available | 2016-05-14T14:13:00Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 1434-6044 | |
dc.identifier.uri | http://hdl.handle.net/11089/18050 | |
dc.description.abstract | Energy-dependent patterns in the arrival directions of cosmic rays are searched for using data of the Pierre Auger Observatory. We investigate local regions around the highest-energy cosmic rays with E≥6×10^19 eV by analyzing cosmic rays with energies above E≥5×10^18 eV arriving within an angular separation of approximately 15°. We characterize the energy distributions inside these regions by two independent methods, one searching for angular dependence of energy-energy correlations and one searching for collimation of energy along the local system of principal axes of the energy distribution. No significant patterns are found with this analysis. The comparison of these measurements with astrophysical scenarios can therefore be used to obtain constraints on related model parameters such as strength of cosmic-ray deflection and density of point sources. | pl_PL |
dc.description.sponsorship | Funded by SCOAP3. The successful installation, commissioning, and
operation of the Pierre Auger Observatory would not have been possible
without the strong commitment and effort from the technical
and administrative staff in Malargüe. We are very grateful to the following
agencies and organizations for financial support: Comisión
Nacional de Energía Atómica, Fundación Antorchas, Gobierno De
La Provincia de Mendoza, Municipalidad de Malargüe, NDM Holdings
and Valle Las Leñas, in gratitude for their continuing cooperation
over land access, Argentina; the Australian Research Council;
Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq), Financiadora de Estudos e Projetos (FINEP), Fundação de
Amparo à Pesquisa do Estado de Rio de Janeiro (FAPERJ), São
Paulo Research Foundation (FAPESP) Grants # 2010/07359-6, #
1999/05404-3, Ministério de Ciência e Tecnologia (MCT), Brazil;
MSMT-CR LG13007, 7AMB14AR005, CZ.1.05/2.1.00/03.0058 and
the Czech Science Foundation grant 14-17501S, Czech Republic; Centre
de Calcul IN2P3/CNRS, Centre National de la Recherche Scientifique
(CNRS), Conseil Régional Ile-de-France, Département Physique
Nucléaire et Corpusculaire (PNC-IN2P3/CNRS), Département Sciences
de l’Univers (SDU-INSU/CNRS), Institut Lagrange de Paris,
ILP LABEX ANR-10-LABX-63, within the Investissements d’Avenir
Programme ANR-11-IDEX-0004-02, France; Bundesministerium für
Bildung und Forschung (BMBF), Deutsche Forschungsgemeinschaft
(DFG), Finanzministerium Baden-Württemberg, HelmholtzGemeinschaft
Deutscher Forschungszentren (HGF), Ministerium für
Wissenschaft und Forschung, Nordrhein Westfalen, Ministerium für
Wissenschaft, Forschung und Kunst, Baden-Württemberg, Germany;
Istituto Nazionale di Fisica Nucleare (INFN), Ministero dell’Istruzione,
dell’Università e della Ricerca (MIUR), Gran Sasso Center for Astroparticle
Physics (CFA), CETEMPS Center of Excellence, Italy; Consejo
Nacional de Ciencia y Tecnología (CONACYT), Mexico; Ministerie
van Onderwijs, Cultuur en Wetenschap, Nederlandse Organisatie
voor Wetenschappelijk Onderzoek (NWO), Stichting voor Fundamenteel
Onderzoek der Materie (FOM), Netherlands; National Centre
for Research and Development, Grant Nos.ERA-NET-ASPERA/01/11
and ERA-NET-ASPERA/02/11, National Science Centre, Grant Nos.
2013/08/M/ST9/00322, 2013/08/M/ST9/00728 and HARMONIA 5 –
2013/10/M/ST9/00062, Poland; Portuguese national funds and FEDER
funds within COMPETE – Programa Operacional Factores de Competitividade
through Fundação para a Ciência e a Tecnologia, Portugal;
Romanian Authority for Scientific Research ANCS, CNDIUEFISCDI
partnership projects nr.20/2012 and nr.194/2012, project
nr.1/ASPERA2/2012 ERA-NET, PN-II-RU-PD-2011-3-0145-17, and
PN-II-RU-PD-2011-3-0062, the Minister of National Education, Programme
for research – Space Technology and Advanced Research
– STAR, project number 83/2013, Romania; Slovenian Research
Agency, Slovenia; Comunidad de Madrid, FEDER funds, Ministerio
de Educación y Ciencia, Xunta de Galicia, European Community
7th Framework Program, Grant No. FP7-PEOPLE-2012-IEF-328826,
Spain; Science and Technology Facilities Council, United Kingdom;
Department of Energy, Contract No. DE-AC02-07CH11359, DE-FR02-
04ER41300, DE-FG02-99ER41107 and DE-SC0011689, National Science
Foundation, Grant No. 0450696, The Grainger Foundation, USA;
NAFOSTED, Vietnam; Marie Curie-IRSES/EPLANET, European Particle
Physics Latin American Network, European Union 7th Framework
Program, Grant No. PIRSES-2009-GA-246806; and UNESCO. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Springer Berlin Heidelberg | pl_PL |
dc.relation.ispartofseries | The European Physical Journal C;6 | |
dc.rights | Uznanie autorstwa 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/pl/ | * |
dc.title | Search for patterns by combining cosmic-ray energy and arrival directions at the Pierre Auger Observatory | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | 269 | pl_PL |
dc.contributor.authorAffiliation | Bergische Universität Wuppertal | pl_PL |
dc.contributor.authorAffiliation | University of Łódź | pl_PL |
dc.identifier.eissn | 1434-6052 | |
dc.references | K. Kotera, A.V. Olinto, The astrophysics of ultrahigh energy cosmic rays. Annu. Rev. Astron. Astrophys. 49, 119–153 (2011) | pl_PL |
dc.references | D. Ryu et al., Magnetic fields in the large-scale structure of the universe. Space Sci. Rev. 166, 1–35 (2012) | pl_PL |
dc.references | L. Widrow et al., The first magnetic fields. Space Sci. Rev. 166(1), 37–70 (2012) | pl_PL |
dc.references | S. Lee, A.V. Olinto, G. Sigl, Extragalactic magnetic field and the highest energy cosmic rays. Astrophys. J. 455, L21–L24 (1995) | pl_PL |
dc.references | M. Lemoine et al., Ultra-high-energy cosmic-ray sources and large-scale magnetic fields. Astrophys. J. 486.2, L115–L118 (1997) | pl_PL |
dc.references | J. Abraham et al., Properties and performance of the prototype instrument for the Pierre Auger Observatory. Nucl. Instrum. Methods Phys. Res. Sect. A 523, 50 (2004) | pl_PL |
dc.references | J. Abraham et al., Trigger and aperture of the surface detector array of the Pierre Auger Observatory. Nucl. Instrum. Methods Phys. Res. Sect. A A613, 29–39 (2010) | pl_PL |
dc.references | J. Abraham et al., Correlation of the highest energy cosmic rays with nearby extragalactic objects. Science 318, 938–943 (2007) | pl_PL |
dc.references | J. Abraham et al., Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei. Astropart. Phys. 29, 188–204 (2008) | pl_PL |
dc.references | P. Abreu et al., Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter. Astropart. Phys. 34, 314–326 (2010) | pl_PL |
dc.references | P. Abreu et al., A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory. J. Cosmol. Astropart. Phys. 4, 040 (2012) | pl_PL |
dc.references | P. Abreu et al., Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory. J. Cosmol. Astropart. Phys. 1305, 009 (2013) | pl_PL |
dc.references | P. Abreu et al., Search for signatures of magneticallyinduced alignment in the arrival directions measured by the Pierre Auger Observatory. Astropart. Phys. 35, 354–361 (2012) | pl_PL |
dc.references | C.L. Basham et al., Energy correlations in electron–positron annihilation: testing quantum chromodynamics. Phys. Rev. Lett. 41(23), 1585–1588 (1978) | pl_PL |
dc.references | S. Brandt et al., The principal axis of jets—an attempt to analyse high-energy collisions as two-body processes. Phys. Lett. 12, 57–61 (1964) | pl_PL |
dc.references | M. Erdmann, P. Schiffer, A method of measuring cosmic magnetic fields with ultra high energy cosmic ray data. Astropart. Phys. 33, 201–205 (2010) | pl_PL |
dc.references | M. Erdmann, T. Winchen, Detecting local deflection patterns of ultra-high energy cosmic rays using the principal axes of the directional energy distribution. in Proceedings of the 33rd ICRC (Rio de Janeiro, Brasil, 2013) | pl_PL |
dc.references | K. Greisen, End to the cosmic-ray spectrum? Phys. Rev. Lett. 16, 748–750 (1966) | pl_PL |
dc.references | G.T. Zatsepin, V. Kuz’min, Upper limit on the spectrum of cosmic rays. Sov. Phys. JETP Lett. 4, 78–80 (1966) | pl_PL |
dc.references | H.-P. Bretz et al., PARSEC: a parametrized simulation engine for ultra-high energy cosmic ray protons. Astropart. Phys. 54, 110–117 (2014) | pl_PL |
dc.references | P. Schiffer, Constraining cosmic magnetic fields by a measurement of energy-energy-correlations with the Pierre Auger Observatory. Ph.D. thesis, RWTH Aachen University (2011) | pl_PL |
dc.references | T. Winchen, The principal axes of the directional energy distribution of cosmic rays measured with the Pierre Auger Observatory. Ph.D. thesis, RWTH Aachen University (2013) | pl_PL |
dc.references | P. Sommers, Cosmic ray anisotropy analysis with a full-sky observatory. Astropart. Phys. 14, 271–286 (2001) | pl_PL |
dc.references | E. Farhi, Quantum chromodynamics test for jets. Phys. Rev. Lett. 39(25), 1587–1588 (1977) | pl_PL |
dc.references | R. Fisher, Dispersion on a sphere. Proc. R. Soc. A 217, 295–305 (1953) | pl_PL |
dc.references | A. Achterberg et al., Intergalactic propagation of UHE cosmic rays. in 19th Texas Symposium on Relativistic Astrophysics and Cosmology, (Paris, France, 1998) | pl_PL |
dc.references | D. Harari et al., Lensing of ultra-high energy cosmic rays in turbulent magnetic fields. J. High Energy Phys. 0203, 045 (2002) | pl_PL |
dc.references | J. Abraham et al., Measurement of the energy spectrum of cosmic rays above 10^18 eV using the Pierre Auger Observatory. Physics Lett. B 685(1018), 239–246 (2010) | pl_PL |
dc.references | K.V. Mardia, Statistics of Directional Data (Academic Press, London, 1972) | pl_PL |
dc.references | S.R. Jammalamadaka, A. SenGupta, Topics in Circular Statistics. Series on multivariate analysis, vol. 5 (World Scientific, Singapore, 2001) | pl_PL |
dc.references | C. Di Giulio, Energy calibration of data recorded with the surface detectors of the Pierre Auger Observatory. in Proceedings of the 31st ICRC (Łódź, 2009) | pl_PL |
dc.references | C. Bonifazi, A. Letessier-Selvon, E. Santos, A model for the time uncertainty measurements in the Auger surface detector array. Astropart. Phys. 28, 523–528 (2008) | pl_PL |
dc.references | M.S. Sutherland, B.M. Baughman, J.J. Beatty, CRT: a numerical tool for propagating ultra-high energy cosmic rays through Galactic magnetic field models. Astropart. Phys. 34, 198–204 (2010) | pl_PL |
dc.references | R. Jansson, G.R. Farrar, A new model of the Galactic magnetic field. Astrophys. J. 757, 14 (2012) | pl_PL |
dc.references | R. Jansson, G.R. Farrar, The Galactic magnetic field. Astrophys. J. 761(1), L11 (2012) | pl_PL |
dc.references | K.M. Górski et al., HEALPix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere. Astrophys. J. 622, 759–771 (2005) | pl_PL |
dc.references | S. Chandrasekhar, Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15(1), 1–89 (1943) | pl_PL |
dc.references | A. L. Read, Modified frequentist analysis of search results (the CL ss method). in 1st Workshop on Confidence Limits (CERN. Geneva, Switzerland, 2000), pp. 81–101 | pl_PL |
dc.references | A.L. Read, Presentation of search results: the CLs technique. J. Phys. G 28(10), 2693–2704 (2002) | pl_PL |
dc.contributor.authorEmail | tobias.winchen@rwth-aachen.de | pl_PL |
dc.identifier.doi | 10.1140/epjc/s10052-015-3471-0 | |
dc.date.defence | 2015 | |
dc.relation.volume | 75 | pl_PL |