dc.contributor.author | Rozmus, Dorota | |
dc.date.accessioned | 2016-02-01T13:28:43Z | |
dc.date.available | 2016-02-01T13:28:43Z | |
dc.date.issued | 2007 | |
dc.identifier.issn | 0208-6018 | |
dc.identifier.uri | http://hdl.handle.net/11089/16842 | |
dc.description.abstract | The idea of error decomposition originates in regression where squared loss
function is applied. More recently, several authors have proposed corresponding decompositions
for classification problem, where 0-1 loss is used. The paper presents the analysis of some
properties of recently developed decompositions for 0-1 loss. | pl_PL |
dc.description.sponsorship | Zadanie pt. „Digitalizacja i udostępnienie w Cyfrowym Repozytorium Uniwersytetu Łódzkiego kolekcji czasopism naukowych wydawanych przez Uniwersytet Łódzki” nr 885/P-DUN/2014 zostało dofinansowane ze środków MNiSW w ramach działalności upowszechniającej naukę. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.subject | classification error | pl_PL |
dc.subject | prediction error | pl_PL |
dc.subject | error decomposition | pl_PL |
dc.title | Methods of Classification Error Decompositions and their Properties | pl_PL |
dc.title.alternative | Analiza własności metod dekompozycji błędu klasyfikacji | pl_PL |
dc.type | Article | pl_PL |
dc.rights.holder | © Copyright by Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2007 | pl_PL |
dc.page.number | 221-233 | pl_PL |
dc.contributor.authorAffiliation | Karol Adamiecki University оf Economics, Katowice, Departament of Statistics | pl_PL |
dc.references | Blake C., Keogh E., Merz C. J. (1998), UCI Repository of Machine Learning Databases. Department of Information and Computer Science, University of California, Irvine. | pl_PL |
dc.references | Breiman L. (1996), Arcing classifiers. Technical Report, Department of Statistics, University of California, California. | pl_PL |
dc.references | Breiman L. (2000), Randomizing outputs to increase prediction accuracy, Machine Learning, 40, 3, 229-242. | pl_PL |
dc.references | Domingos P. (2000), A unified hias-variance decomposition for zero-one and squared loss, “Proceedings of the Seventeenth National Conference on Arificial Intelligence, AAAI Press, Austin, 564-569. | pl_PL |
dc.references | Geman S., Bienenstock E., Doursat R. (1992), Neural networks and the bias/variance dilemma, “Neural Computation”, 4, 1-58. | pl_PL |
dc.references | Kohavi R., Wolpert D. H. (1995), Bias plus variance decomposition for zero-one loss functions, “Proceedings of the Twelfth International Conference on Machine Learnig , Morgan Kaufmann, Tahoe City, 275-283. | pl_PL |
dc.references | Kong E. B., Dietterich T. G. (1995), Error-correcting output coding corrects bias and variance, „Proceedings of the Thirteenth International Conference on Machine Learnig”, Morgan Kaufmann, 313-321. | pl_PL |
dc.references | Tibshirani R. (1996), Bias, variance and prediction error for classification rules, Technical Report, Department of Statistics, University of Toronto, Toronto. | pl_PL |