dc.contributor.author | Domański, Czesław | |
dc.date.accessioned | 2016-01-14T12:26:36Z | |
dc.date.available | 2016-01-14T12:26:36Z | |
dc.date.issued | 2007 | |
dc.identifier.issn | 0208-6018 | |
dc.identifier.uri | http://hdl.handle.net/11089/16601 | |
dc.description.abstract | The assumption of multivariate normality is the basis of the standard methodology
of multivariate mathematical statistics. The commonness of the use of the multivariate
normal distribution is mainly implied by properties of this distribution in comparison
with other multivariate distributions.
Investigating the influence of the departures from normality on the used methods of
constructing confidence intervals and diverse testing procedures is neither easy nor successfully
implemented. Statistical methods to analyze multivariate numerical data robust
to departures from normality are still at their early stage of development. It is of great
use to have procedures for testing reasonable assumptions of multivariate normality for a
given set of observed random vectors, especially for the ones from laboratory testing
designs or time series.
There are many tests of multivariate normality. Their number follows from their
usefulness to investigate different departures from multivariate normality.
In the article the results concerning the power of tests based on the measures of
shape, derived from both analytical and Monte Carlo investigations, are presented.
The multivariate coefficients of the measures of shape are also applied as statistics
characterizing multivariate sample. That is why the research of the tests of multivariate
normality based on the measures of skewness and kurtosis was carried out. | pl_PL |
dc.description.sponsorship | Zadanie pt. „Digitalizacja i udostępnienie w Cyfrowym Repozytorium Uniwersytetu Łódzkiego kolekcji czasopism naukowych wydawanych przez Uniwersytet Łódzki” nr 885/P-DUN/2014 zostało dofinansowane ze środków MNiSW w ramach działalności upowszechniającej naukę. | pl_PL |
dc.language.iso | pl | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartofseries | Acta Universitatis Lodziensis. Folia Oeconomica;205 | |
dc.title | Własności testów wielowymiarowej normalności opartych na miarach kształtu | pl_PL |
dc.title.alternative | Properties of multivariate normality tests based on measures of shape | pl_PL |
dc.type | Article | pl_PL |
dc.rights.holder | © Copyright by Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2007 | pl_PL |
dc.page.number | 89-107 | pl_PL |
dc.contributor.authorAffiliation | Uniwersytet Łódzki | pl_PL |
dc.references | Andrews D. F., Gnanadesikan R., Warner J. L. (1971), A note on the Selection of Data Transformations, Biometrika 58, 249-254. | pl_PL |
dc.references | Andrews D. F., Gnanadesikan R., Warner J.L. (1973), Robust Estimation for Multiple Linear Regression Models, Bulletin of the International Statistical Institute, 39th Session ISI, Wiedeń, 105-111. | pl_PL |
dc.references | Bera A, John S. (1983), Tests for multivariate normality with Pearson alternatives, Comm Statist.-Theory Methods, 12, 103-117. | pl_PL |
dc.references | Box C.E.P., Cox D.R. (1964), An Analysis of Transformation, Journal of the Royal Statistical Society, Ser B, 26, 211-252. | pl_PL |
dc.references | Domański Cz., Wagner W. (1984), Testy wielowymiarowej normalności, Przegląd Statystyczny, vol. 31, 3/4, pp. 259-270. | pl_PL |
dc.references | Fattorini L. (1982), Assessing Multivariate Normality on Beta Plots, Statistica 42, 251 — 257. | pl_PL |
dc.references | Gnanadesikan R. (1977), Methods for statistical Data Analysis for Multivariate Obserwations, J. Wiley and Sons, New York. | pl_PL |
dc.references | Healy M. J. R. (1968), Multivariate normal plotting, Appl. Statist., 17, 157-161. | pl_PL |
dc.references | Henze N., Zirkler, B. (1990), A Class of Invariant Consistent Tests for Multivariate Normality, Comm. Statist. - Theory Methods, 19, pp. 3595-3618. | pl_PL |
dc.references | Horswell R. L., Looney S. W. (1992), Diagnostic Limitations of Skewness Coefficients in Assessing Departures from Univariate and Multivariate Normality, Comm. Statist. Comp. Simulation, 22, pp. 437-439. | pl_PL |
dc.references | Jarque C.M., McKenzie C.R. ( 1995), Testing for multivariate normality in simultaneous equations models. Math. Comput. Simulation, 39, 323-328. | pl_PL |
dc.references | Koziol J. A. (1986), Assessing Multivariate Normality: a Compendium, Comm. Statist. - Theory Methods, 15, pp. 2763-2783. | pl_PL |
dc.references | Malkovich J. F. & Afifi A. A. (1973), On Tests for Multivariate Normality, J. Amer. Statist. Assoc., 68, pp. 176-179. | pl_PL |
dc.references | Mardia K. V. (1970), Measures of multivariate skewness and kurtosis with applications. Biometrika, 57, 519-530. | pl_PL |
dc.references | Mardia K.V. (1974), Applications of some measures of multivariate skewness and kurtosis for testing normality and robustness studies. Sankhya, 36, 115-128. | pl_PL |
dc.references | Mardia K. V. (1980), Tests of Univariate and Multivariate Normality, Handbook of Statistics, 1, Ed. P. R. Krishnaiah, Amstersam: Northh Holland, pp. 297-320. | pl_PL |
dc.references | Mardia K.V., Foster K. (1983), Omnibus tests of multinormality based on skewness and kurtosis. Commun.Statist., 12, 207-221. | pl_PL |
dc.references | Mecklin C. J, Mundfrom D. J.(2004), An Appraisel and Bibliography of Tests for Multivariate Normality, International Statistical Review, 72, pp. 123-138. | pl_PL |
dc.references | Royston J. P. (1983), Some Techniques for Assessing Multivariate Normality Based on the Shapiro-Wilk, W. Appl. Statist., 32, pp. 121-133. | pl_PL |
dc.references | Shapiro S. S., Wilk M. B., Chen H. J., (1968), A Comparative Study of Various Tests for Normality, Journal of the American Statistical Association 63, 1343-1372. | pl_PL |
dc.references | Snedecor, G. W., Cochran W. G. (1989), Statistical Methods, 8 th ed. Ames, IA: Iowa State Uniwesity Press. | pl_PL |
dc.references | Small N.J.H. (1980), Marginal skewness and kurtosis in testing multivariate normality. Appl Statist., 29, 85-87. | pl_PL |
dc.references | Wagle B. (1968), The multivariate beta distribution and a test for multivariate normality. J. Roy. Statist. Soc. Ser. B, 30, 511-515. | pl_PL |
dc.references | Wagner W. (1982), Testy zgodności z rozkładem normalnym dla próby prostej, Listy Biometryczne 17, 393-401. | pl_PL |
dc.references | Wagner W. (1990), Test normalności wielowymiarowej Shapiro-Wilka i jego zastosowania w doświadczalnictwie rolniczym, Rozprawy Naukowe AR w Poznaniu 197. | pl_PL |
dc.references | Ward P. J. (1988), Goodness-of-Fit Tests for Multivariate Normality, Ph.D. Thesis, University of Alabama. | pl_PL |