Pokaż uproszczony rekord

dc.contributor.authorSoliwoda, Katarzyna
dc.contributor.authorTomaszewska, Emilia
dc.contributor.authorTkacz-Szczęsna, Beata
dc.contributor.authorRosowski, Marcin
dc.contributor.authorCelichowski, Grzegorz
dc.contributor.authorGrobelny, Jaroslaw
dc.date.accessioned2015-10-27T13:07:36Z
dc.date.available2015-10-27T13:07:36Z
dc.date.issued2014
dc.identifier.issn1899-4741
dc.identifier.otherbwmeta1.element.baztech-978e202f-0333-4610-90f3-83dec7893333
dc.identifier.urihttp://hdl.handle.net/11089/12911
dc.descriptionThe papers were published with the financial support from the budget of the West Pomeranian Voivodeship.pl_PL
dc.description.abstractThis paper describes the influence of the chain length and the functional group steric accessibility of thiols modifiers on the phase transfer process efficiency of water synthesized gold nanoparticles (AuNPs) to toluene. The following thiols were tested: 1-decanethiol, 1,1-dimethyldecanethiol, 1-dodecanethiol, 1-tetradecanethiol and 1-oktadecanethiol. Nanoparticles (NPs) synthesized in water were precisely characterized before the phase transfer process using Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM). The optical properties of AuNPs before and after the phase transfer were studied by the UV-Vis spectroscopy. Additionally, the particle size and size distribution before and after the phase transfer of nanoparticles were investigated using Dynamic Light Scattering (DLS). It turned out that the modification of NPs surface was not effective in the case of 1,1-dimethyldecanethiol, probably because of the difficult steric accessibility of the thiol functional group to NPs surface. Consequently, the effective phase transfer of AuNPs from water to toluene did not occur. In toluene the most stable were nanoparticles modified with 1-decanethiol, 1-dodecanethiol and 1-tetradecanethiol.pl_PL
dc.description.sponsorshipThis work was supported by FP7-NMP-2010-SMALL-4 program (HYMEC), project number 263073. Scientific work supported by the Polish Ministry of Science and Higher Education, funds for science in 2011–2014 allocated for the cofounded international project.pl_PL
dc.language.isoenpl_PL
dc.publisherWest Pomeranian University of Technology, Szczecin, POLAND, Publishing Housepl_PL
dc.relation.ispartofseriesPolish Journal of Chemical Technology;1
dc.subjectgold nanoparticlespl_PL
dc.subjectphase transferpl_PL
dc.subjectthiolspl_PL
dc.subject1-decanethiolpl_PL
dc.subject1,1-dimethyldecanethiolpl_PL
dc.subject1-dodecanethiolpl_PL
dc.subject1-oktadecanethiolpl_PL
dc.subject1-tetradecanethiolpl_PL
dc.titleThe influence of the chain length and the functional group steric accessibility of thiols on the phase transfer efficiency of gold nanoparticles from water to toluenepl_PL
dc.page.number86-91pl_PL
dc.contributor.authorAffiliationUniversity of Lodz, Faculty of Chemistry, Department of Materials Technology and Chemistry, Pomorska 163, 90-236 Lodz, Polandpl_PL
dc.referencesMurphy, C.J., Sau, T.K., Gole, A.M., Orendorff, C.J., Gao, J., Gou, L., Hunyadi, S.E. & Li, T. (2005). Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications. J. Phys. Chem. B 109(29), 13857-13870. DOI: 10.1021/jp0516846.pl_PL
dc.referencesKo, S.H., Park, I., Pan, H., Grigoropoulos, C.P., Pisano, A.P., Luscombe, C.K. & Frèchet, J.M.J. (2007). Direct Nanoimprinting of Metal Nanoparticles for Nanoscale Electronics Fabrication, Nano Lett. 7(7), 1869-1877. DOI: 10.1021/nl070333v.pl_PL
dc.referencesFendler, J.H. (2001). Chemical Self-assembly for Electronic Applications, Chem. Mater. 13(10), 3196-3210. DOI: 10.1021/cm010165m.pl_PL
dc.referencesMaillard, M., Giorgio, S. & Pileni, M.P. (2002). Silver Nanodisks, Advanced Mat. 14(15), 1084-1086. DOI: 10.1002/1521-4095(20020805)14:15<1084.pl_PL
dc.referencesYang, Y., Ouyang, J., Ma, L., Tseng, J.H.R. & Chu, C.W. (2006). Electrical Switching and Bistability in Organic/Polymeric Thin Films and Memory Devices, Adv. Funct. Mater. 16(8), 1001-1014. DOI: 10.1002/adfm.200500429.pl_PL
dc.referencesTsoukalas, D. (2009). From silicon to organic nanoparticles memory devices. Phil. Trans. R. Soc. A 367(1905), 4169-4179. DOI: 10.1098/rsta.2008.0280.pl_PL
dc.referencesPrakash, A., Ouyang, J., Lin, J.L. & Yanga, Y. (2006). Polymer memory device based on conjugated polymer and gold nanoparticles. Appl. Phys. 100(054309). http://dx.doi. org/10.1063/1.2337252.pl_PL
dc.referencesManna, A., Imae, T., Aoi, K., Okada, M. & Yogo, T. (2001). Synthesis of dendrimer-passivated noble metal nanoparticles in a polar medium: comparison of size between silver and gold particles. Chem. Mater. 13(5), 1674-1681. DOI: 10.1021/ cm000416b.pl_PL
dc.referencesZhang, J.L., Han, B.X., Liu, M.H., Liu D.X., Dong, Z.X., Liu, J., Li, D., Wang, J., Dong, B.Z., Zhang, H. &. Rong, L.X. (2003). Ultrasonication-Induced Formation of Silver Nanofi bers in Reverse Micelles and Small-Angle X-ray Scattering Studies, J. Phys. Chem. B 107(16), 3679-3683. DOI: 10.1021/jp026738f.pl_PL
dc.referencesMcLeod, M.C., McHenry, R.S., Beckman, E.J. & Roberts, C.B. (2003). Synthesis and Stabilization of Silver Metallic Nanoparticles and Premetallic Intermediates in Perfl uoropolyether/ CO<sub>2</sub> Reverse Micelle Systems. J. Phys. Chem. B 107(12), 2693-2700. DOI: 10.1021/jp0218645.pl_PL
dc.referencesBrust, M., Walker, M., Bethell, D., Schiffrin, D.J. & Whyman, R. (1994). Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System. J. Chem. Soc. Chem. Commun. 801-802. DOI: 10.1039/C39940000801.pl_PL
dc.referencesGoulet, P.J.G., Bourret, G.R. & Lennox, R.B. (2012). Facile Phase Transfer of Large, Water-Soluble Metal Nanoparticles to Nonpolar Solvents, Langmuir 28(5), 2909−2913. DOI: 10.1021/la2038894.pl_PL
dc.referencesChandradass, J. & Kim, K.H. (2010). Synthesis and characterization of CuAl<sub>2</sub>O<sub>4</sub> nanoparticles via a reverse microemulsion method. J. Ceram. Process. Res. 11(2), 150-153.pl_PL
dc.referencesGao, D., He, R., Carraro, C., Howe, R.T, Yang, P. & Maboudian, R. (2005). Selective Growth of Si Nanowire Arrays via Galvanic Displacement Processes in Water-in-Oil Microemulsions, J. Am. Chem. Soc.127(13), 4574-4575. DOI: 10.1021/ja043645y.pl_PL
dc.referencesEastoe, J., Hollamby, M.J. & Hudson, L. (2006). Recent advances in nanoparticle synthesis with reversed micelles, Adv. Colloid Interfac. 128-130, 5-15. DOI:10.1016/j.cis.2006.11.009.pl_PL
dc.referencesShon, Y.S., Chuc, S. & Voundi, P. (2009). Stability of tetraoctylammonium bromide-protected gold nanoparticles: Effects of anion treatments, Colloids and Surfaces A: Physicochem. Eng. Aspects 352(1-3), 12-17. DOI:10.1016/j. colsurfa.2009.09.037.pl_PL
dc.referencesFrenkel, A.I., Nemzer, S., Pister, I., Soussan, L., Harris, T., Sun, Y. & Rafailovich, M.H. (2005). Size-controlled synthesis and characterization of thiol-stabilized gold nanoparticles. J. Chem. Phys. 123(18), 184701. DOI: 10.1063/1.2126666.pl_PL
dc.referencesWang, X., Xu, S., Zhou, J. & Xu, W. (2010). A rapid phase transfer method for nanoparticles using alkylamine stabilizers. J. Colloid Interf. Sci. 348(1), 24-28. DOI:10.1016/j. jcis.2010.03.068.pl_PL
dc.referencesKumar, A., Mukherjee, P., Guha, A., Adyantaya, S.D., Mandale, A.B., Kumar, R. & Sastry, M. (2000). Amphoterization of colloidal gold particles by capping with valine molecules and their phase transfer from water to toluene by electrostatic coordination with fatty amine molecules. Langmuir 16(25), 9775-9783. DOI: 10.1021/la000886k.pl_PL
dc.referencesGaponik, N., Talapin, D.V., Rogach, A.L., Eychmuler, A. & Weller, H. (2002). Effi cient phase transfer of luminescent thiol-capped nanocrystals: from water to nonpolar organic solvents, Nano Lett. 2(8), 803-806. DOI: 10.1021/nl025662w.pl_PL
dc.referencesLala, N., Lalbegi, S.P., Adyanthaya, S.D. & Sastry, M. (2001). Phase transfer of aqueous gold colloidal particles capped with inclusion complexes of cyclodextrin and alkanethiol molecules into chloroform. Langmuir 17(12), 3766-3768. DOI: 10.1021/la0015765.pl_PL
dc.referencesMachunsky, S. & Peuker, U.A. (2007). Liquid-Liquid Interfacial Transport of Nanoparticles. Hindawi Publishing Corporation, Physical Separation in Science and Engineering. Article ID 34832, 7 pages. DOI:10.1155/2007/34832.pl_PL
dc.referencesQian, H., Zhu, M., Andersen, U.N. & Jin, R. (2009). Facile, Large-Scale Synthesis of Dodecanethiol-Stabilized Au38. Clusters J. Phys. Chem. A 113(16), 4281-4284. DOI: 10.1021/jp810893w.pl_PL
dc.referencesGrobelny, J., Delrio, F.W., Pradeep, N., Kim D.I., Hackley, V.A. & Cook, R.F. (2011). Methods in Molecular Biology. In S.E. McNeil (Ed.), Size measurement of nanoparticles using atomic force microscopy in Characterization of Nanoparticles Intended for Drug Delivery (pp. 71-82). vol. 697, Springer.pl_PL
dc.referencesBarrena, E., Ocal, C. & Salmeron, M. (2001). Structure and stability of tilted-chain phases of alkanethiols on Au (111). J. Chem. Phys. 114(9), 4210-4015. DOI: 10.1063/1.1346676.pl_PL
dc.referencesSchreiber, F. (2000). Structure and growth of self-assembling monolayers, Progress in Surface Science 65(5-8), 151-256. DOI:10.1016/S0079-6816(00)00024-1.pl_PL
dc.contributor.authorEmailjgrobel@uni.lodz.plpl_PL
dc.identifier.doi10.2478/pjct-2014-0015
dc.relation.volume16pl_PL


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord