Show simple item record

dc.contributor.authorPalusiak, Marcin
dc.contributor.authorDomagala, Malgorzata
dc.contributor.authorDominikowska, Justyna
dc.contributor.authorBickelhaupt, F. Matthias
dc.date.accessioned2015-10-26T11:57:38Z
dc.date.available2015-10-26T11:57:38Z
dc.date.issued2014-01-03
dc.identifier.issn1463-9076
dc.identifier.urihttp://hdl.handle.net/11089/12906
dc.description.abstractIt was recently postulated that the benzene ring and its 4n + 2 p-electron analogues are resistant to the substituent effect due to the fact that such systems tend to retain their delocalized character. Therefore, the 4n p-electron dicationic form of benzene should appear to be less resistant to the substituent effect, as compared with its parent neutral molecule. For this reason the effect of substitution on the dicationic form of benzene was thoroughly investigated and the consequences of single and double substitution (of para- and meta-type) were assessed by means of several parameters, including various aromaticity indices and the Substituent Effect Stabilization Energy (SESE) parameter. It is shown that, distinct from neutral benzene, its dicationic form is much more sensitive to the substitution. However, the dicationic benzene itself, as a moiety with a significant deficit of electrons, will be considered as a strongly electron-withdrawing centre, thus interacting in a cooperative way with electron-donating substituents and in an anticooperative way with electron-withdrawing substituents. Clear differences between singlet- and triplet-state dicationic forms of benzene were also found. Triplet state structures seem to be significantly more delocalized, and as a consequence less sensitive to the substituent effect than the singlet state structures. Finally, the para- and meta-type substitution was investigated and it was found that the disubstituted dicationic benzene exhibits significantly different behaviour from that of neutral benzene. Although the difference between para- and meta-substitution can be found for dicationic benzene, the mechanism responsible for such an observation is different from that present in neutral benzene. Finally, it is shown how and why double ionization of benzene reduces its aromatic character in the singlet dication whereas aromaticity is essentially conserved in the triplet dication. The above findings highlight that in the case of charged analogues of benzene the aromaticity indices can be misleading and are to be used with great precaution.pl_PL
dc.description.sponsorshipMP, MD and JD acknowledge the financial support from National Science Centre of Poland (Grant no. 2011/03/B/ST4/01351). J.D. additionally acknowledges the financial support from University of Ło´dz´ Foundation (University of Ło´dz´ Foundation Award) and from the National Science Centre of Poland (Grant no. 2012/05/N/ ST4/00203). F.M.B. thanks the Netherlands Organization for Scientific Research (NWO) for financial support. Calculations using the Gaussian 09 set of codes were carried out in Academic Computer Center Cyfronet AGH Krako´w (http://www.cyfronet. krakow.pl) and Wrocław Center for Networking and Supercomputing (http://www.wcss.wroc.pl). Access to HPC machines and licensed software is gratefully acknowledged.pl_PL
dc.language.isoenpl_PL
dc.publisherRSC Publishingpl_PL
dc.relation.ispartofseriesPhysical Chemistry Chemical Physics;2014
dc.rightsUznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.titleThe substituent effect on benzene dicationspl_PL
dc.typeArticlepl_PL
dc.page.number4752-4763pl_PL
dc.contributor.authorAffiliationPalusiak Marcin, Department of Theoretical and Structural Chemistry, University of Łódżpl_PL
dc.contributor.authorAffiliationDomagała, Małgorzata, Department of Theoretical and Structural Chemistry, University of Łódżpl_PL
dc.contributor.authorAffiliationDominikowska Justyna, Department of Theoretical and Structural Chemistry, University of Łódżpl_PL
dc.contributor.authorAffiliationBickelhaupt F. Matthias, Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), VU University Amsterdam, Institute for Molecules and Materials (IMM), Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegenpl_PL
dc.referencesIUPAC. Compendium of Chemical Terminology, 2nd edn, (the ‘‘Gold Book’’) compiled by A. D. McNaught and A. Wilkinson, Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. DOI: 10.1351/goldbook.pl_PL
dc.referencesP. Muller, Glossary of terms used in physical organic chemistry, IUPAC Recommendation, 1994pl_PL
dc.referencesT. M. Krygowski and B. T. Stepien, Chem. Rev., 2005, 105, 3482.pl_PL
dc.referencesT. M. Krygowski, K. Ejsmont, B. T. Stepien, M. K. Cyranski, J. Poatier and M. Sola, J. Org. Chem., 2004, 69, 6634.pl_PL
dc.referencesT. M. Krygowski and M. K. Cyranski, Chem. Rev., 2001, 101, 1385.pl_PL
dc.references(a) J. Kruszewski and T. M. Krygowski, Tetrahedron Lett., 1972, 13, 3839; (b) T. M. Krygowski, J. Chem. Inf. Comput. Sci., 1993, 33, 70.pl_PL
dc.referencesT. M. Krygowski, B. T. Stepien, M. K. Cyranski and K. Ejsmont, J. Phys. Org. Chem., 2005, 18, 886.pl_PL
dc.references(a) M. A. Dobrowolski, J. Kaniewski, T. M. Krygowski and M. K. Cyran´ski, Collect. Czech. Chem. Commun., 2009, 74, 115; (b) T. M. Krygowski, M. A. Dobrowolski, M. K. Cyranski, W. P. Ozimin´ski and P. Bultinck, Comput. Theor. Chem., 2012, 984, 36.pl_PL
dc.referencesM. Palusiak and T. M. Krygowski, New J. Chem., 2009, 33, 1753pl_PL
dc.referencesJ. Dominikowska and M. Palusiak, Phys. Chem. Chem. Phys., 2011, 13, 11976 and references cited therein.pl_PL
dc.references(a) D. Lloyd, The chemistry of conjugated cyclic compounds: to be or not to be like benzene, Wiley, New York, 1990; (b) M. B. Smith, March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, Wiley, Hoboken, New Jersey, 7th edn, 2013.pl_PL
dc.referencesM. Cohen, C. M. Anderson, A. Cowley, G. V. Coyne, W. Fawley, T. R. Gull, E. A. Harlan, G. H. Herbig, F. Holden and H. S. Hudson, et al, Astrophys. J., 1975, 196, 179.pl_PL
dc.references(a) A. N. Witt, R. E. Schild and J. B. Kraiman, Astrophys. J., 1984, 281, 708; (b) A. N. Witt and T. A. Boroson, Astrophys. J., 1990, 355, 182; (c) D. G. Furton and A. N. Witt, Astrophys. J., 1992, 386, 587.pl_PL
dc.referencesK. D. Gordon, A. N. Witt and B. C. Friedmann, Astrophys. J., 1998, 498, 522.pl_PL
dc.references(a) L. B. d’Hendecourt, A. Leger, G. Olofsson and W. Schmidt, Astron. Astrophys., 1986, 170, 91; (b) A. N. Witt and R. E. Schild, Astrophys. J., 1988, 325, 837; (c) T. J. Wdowiak, B. Donn, J. A. Nuth, E. Chappelle and M. Moore, Astrophys. J., 1989, 336, 838; (d) A. P. Jones, W. W. Duley and D. A. Williams, Q. J. R. Astron. Soc., 1990, 31, 567; (e) A. N. Witt, K. D. Gordon and D. G. Furton, Astrophys. J., 1998, 501, 111; ( f ) S. S. Seahra and W. W. Duley, Astrophys. J., 1999, 520, 719; (g) M. Hammonds, A. Pathak and P. J. Sarre, Phys. Chem. Chem. Phys., 2009, 11, 4458; (h) X. Chillier, P. Boulet, H. Chermette, F. Salama and J. Weber, J. Chem. Phys., 2001, 115, 1769; (i) Y. M. Rhee, T. J. Lee, M. S. Gudipati, L. J. Allamandola and M. Head-Gordon, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 5274.pl_PL
dc.referencesInterstellar molecules – their laboratory and interstellar habitat, ed.K. M. T. Yamada and G. Winnewisser, Springer, 2011.pl_PL
dc.referencesR. Einholz and H. F. Bettinger, Angew. Chem., Int. Ed., 2013, 52, 9818.pl_PL
dc.references(a) S. C. A. H. Pierrefixe and F. M. Bickelhaupt, Chem.–Eur. J., 2007, 13, 6321; (b) S. C. A. H. Pierrefixe and F. M. Bickelhaupt, J. Phys. Chem. A, 2008, 112, 12816; (c) S. C. A. H. Pierrefixe and F. M. Bickelhaupt, Aust. J. Chem., 2008, 61, 209.pl_PL
dc.references(a) P. Hohenberg and W. Kohn, Phys. Rev. B: Solid State, 1964, 136, 864; (b) W. Kohn and L. J. Sham, Phys. Rev. A, 1965, 140, 1133.pl_PL
dc.referencesM. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09 Revision D.01, Gaussian, Inc., Wallingford CT, 2009.pl_PL
dc.references(a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648; (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B: Condens. Matter Mater. Phys., 1988, 37, 785; (c) P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623; (d) B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett., 1989, 157, 200.pl_PL
dc.referencesR. Krishnan, J. S. Binkley, R. Seeger and J. A. Pople, J. Chem. Phys., 1980, 72, 650.pl_PL
dc.referencesS. Rayne and K. Forest, Comput. Theor. Chem., 2011, 976, 105.pl_PL
dc.referencesN. X. Wang and A. K. Wilson, J. Chem. Phys., 2004, 121, 7632.pl_PL
dc.references(a) L. A. Curtiss, K. Raghavachari, P. C. Redfern and J. A. Pople, J. Chem. Phys., 2000, 112, 7374; (b) A. J. Cohen, P. Mori-Sanchez and W. Yang, Chem. Rev., 2012, 112, 289; (c) S. F. Sousa, P. A. Fernandes and M. J. Ramos, J. Phys. Chem. A, 2007, 111, 10439.pl_PL
dc.referencesJ. Dominikowska and M. Palusiak, Struct. Chem., 2012, 23, 1173.pl_PL
dc.referencesJ. Poater, X. Fradera, M. Duran and M. Sola, Chem.–Eur. J., 2003, 9, 400.pl_PL
dc.references(a) E. Matito, M. Duran and M. Sola, J. Chem. Phys., 2005, 122, 14109; (b) erratum, E. Matito, M. Duran and M. Sola, J. Chem. Phys., 2006, 125, 059901.pl_PL
dc.references(a) R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Clarendon, Oxford, 1990; (b) R. F. W. Bader, Chem. Rev., 1991, 91, 893.pl_PL
dc.referencesT. A. Keith, AIMAll program Version 13.02.26, 2013, http:// aim.tkgristmill.com.pl_PL
dc.references(a) X. Fradera, M. A. Austen and R. F. W. Bader, J. Phys. Chem. A, 1999, 103, 304; (b) X. Fradera, J. Poater, S. Simon, M. Duran and M. Sola, Theor. Chem. Acc., 2002, 108, 214.pl_PL
dc.referencesP. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao and N. J. R. v. Eikema Hommes, J. Am. Chem. Soc., 1996, 118, 6317.pl_PL
dc.referencesP. v. R. Schleyer, M. Manoharan, Z. Wang, X. B. Kiran, H. Jiao, R. Puchta and N. J. R. v. Eikema Hommes, Org. Lett., 2001, 3, 2465.pl_PL
dc.references(a) P. Lazzeretti, Prog. Nucl. Magn. Reson. Spectrosc., 2000, 36, 1; (b) R. Islas, G. Martı´nez-Guajardo, J. O. C. Jime´nezHalla, M. Sola` and G. Merino, J. Chem. Theory Comput., 2010, 6, 1131; (c) J. J. Torres, R. Islas, E. Osorio, J. G. Harrison, W. Tiznado and G. Merino, J. Phys. Chem. A, 2013, 117, 5529.pl_PL
dc.referencesC. Hansch, A. Leo and R. W. Taft, Chem. Rev., 1991, 91, 165.pl_PL
dc.referencesL. P. Hammett, Physical Organic Chemistry, McGraw-Hill, New York, 1970.pl_PL
dc.referencesM. Charton, Prog. Phys. Org. Chem., 1981, 13, 119.pl_PL
dc.referencesT. M. Krygowski, M. Palusiak, A. Płonka and J. E. ZacharaHoreglad, J. Phys. Org. Chem., 2007, 20, 297.pl_PL
dc.referencesV. Gogonea, P. v. R. Schleyer and P. R. Schreiner, Angew. Chem., Int. Ed., 1998, 37, 1945.pl_PL
dc.relation.volume16pl_PL


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe
Except where otherwise noted, this item's license is described as Uznanie autorstwa-Użycie niekomercyjne 4.0 Międzynarodowe