Pokaż uproszczony rekord

dc.contributor.authorBurnat, Barbara
dc.contributor.authorBlaszczyk, T.
dc.contributor.authorDercz, G.
dc.date.accessioned2015-10-21T08:44:12Z
dc.date.available2015-10-21T08:44:12Z
dc.date.issued2013-11-23
dc.identifier.issn1573-4838
dc.identifier.urihttp://hdl.handle.net/11089/12754
dc.description.abstractThe aim of this study was to demonstrate the relationship between the structural and corrosion properties of an ISO 5832-9 biomedical alloy modified with titanium dioxide (TiO2) layers. These layers were obtained via the sol–gel method by acid-catalyzed hydrolysis of titanium isopropoxide in isopropanol solution. To obtain TiO2 layers with different structural properties, the coated samples were annealed at temperatures of 200, 300, 400, 450, 500, 600 and 800 C for 2 h. For all the prepared samples, accelerated corrosion measurements were performed in Tyrode’s physiological solution using electrochemical methods. The most important corrosion parameters were determined: corrosion potential, polarization resistance, corrosion rate, breakdown and repassivation potentials. Corrosion damage was analyzed using scanning electron microscopy. Structural analysis was carried out for selected TiO2 coatings annealed at 200, 400, 600 and 800 C. In addition, the morphology, chemical composition, crystallinity, thickness and density of the deposited TiO2 layers were determined using suitable electron and X-ray measurement methods. It was shown that the structure and character of interactions between substrate and deposited TiO2 layers depended on annealing temperature. All the obtained TiO2 coatings exhibit anticorrosion properties, but these properties are related to the crystalline structure and character of substrate–layer interaction. From the point of view of corrosion, the best TiO2 sol–gel coatings for stainless steel intended for biomedical applications seem to be those obtained at 400 C.pl_PL
dc.description.sponsorshipThis study was supported by Grant No. N N507 501339 of the National Science Centre. The authors wish to express their thanks to J. Borowski (MEDGAL, Poland) for the Rex 734 alloy.pl_PL
dc.language.isoenpl_PL
dc.publisherSpringerpl_PL
dc.relation.ispartofseriesJournal of Materials Science: Materials in Medicine;2014
dc.rightsUznanie autorstwa 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/pl/*
dc.titleStructural analysis and corrosion studies on an ISO 5832-9 biomedical alloy with TiO2 sol–gel layerspl_PL
dc.typeArticlepl_PL
dc.page.number623–634pl_PL
dc.contributor.authorAffiliationBurnat B., Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodzpl_PL
dc.contributor.authorAffiliationBlaszczyk T., Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodzpl_PL
dc.contributor.authorAffiliationDercz G., Institute of Materials Science, University of Silesia,pl_PL
dc.referencesGiordani EJ, Guimaraes VA, Pinto TB, Ferreira I. Effect of precipitates on the corrosion–fatigue crack initiation of ISO 5832-9 stainless steel biomaterial. Int J Fatigue. 2004;26:1129–36.pl_PL
dc.referencesUggowitzer PJ, Magdowski R, Speidel MO. Nickel free high nitrogen austenitic steels. ISIJ Int. 1996;36:901–8.pl_PL
dc.referencesThomman UI, Uggowitzer PJ. Wear–corrosion behavior of biocompatible austenitic stainless steels. Wear. 2000;239:48–58.pl_PL
dc.referencesBritish Stainless Steel Association. Selection of stainless steels for surgical implants. http://www.bssa.org.uk/topics.php?article= 138. Accessed 20 June 2013.pl_PL
dc.referencesLiu C, Bi Q, Matthews A. EIS comparison on corrosion performance of PVD TiN and CrN coated mild steel in 0.5 N NaCl aqueous solution. Corros Sci. 2001;43:1953–61.pl_PL
dc.referencesBattison GA, Gerbasi R, Porchia M. Influence of substrate on structural properties of TiO2 thin films obtained via MOCVD. Thin Solid Films. 1994;239:186–91.pl_PL
dc.referencesFallet M, Mahdjoub H, Gautier B, Bauer JP. Electrochemical behavior of ceramic sol-gel coatings on mild steel. J Non-Cryst Solids. 2001;293–295:527–33.pl_PL
dc.referencesPang X, Zhitomirsky I, Niewczas M. Cathodic electrolytic deposition of zirconia films. Surf Coat Technol. 2005;195:138–46.pl_PL
dc.referencesGuillard C, Beaugiraud B, Dutriez C, Herrmann JM, Jaffrezic H, Jaffrezic-Renault N, Lacroix M. Physicochemical properties and photocatalytic activities of TiO2-films prepared by sol–gel methods. Appl Catal B. 2002;39:331–42.pl_PL
dc.referencesVelten D, Biehl V, Aubertin F, Valeske B, Possart W, Breme J. Preparation of TiO2 layers on cp-Ti and Ti6Al4 V by thermal and anodic oxidation and by sol-gel coating techniques and their characterization. J Biomed Mater Res. 2002;59:18–28.pl_PL
dc.referencesAlam MJ, Cameron DC. Preparation and characterization of TiO2 thin films by sol-gel method. J Sol-Gel Sci Technol. 2002;25:137–45.pl_PL
dc.referencesGalliano P, De Damborenea JJ, Pascual MJ, Duran A. Sol-gel coatings on 316L steel for clinical applications. J Sol-Gel Sci Technol. 1998;13:723–7.pl_PL
dc.referencesWang D, Bierwagen GP. Sol–gel coatings on metals for corrosion protection. Prog Org Coat. 2009;64:327–38.pl_PL
dc.referencesVelten D, Eisenbarth E, Schanne N, Breme J. Biocompatible Nb2O5 thin films prepared by means of the sol-gel process. J Mater Sci Mater Med. 2004;15:457–61.pl_PL
dc.referencesTayade RJ, Surolia PK, Kulkarni RG, Jasra RV. Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2. Sci Technol Adv Mater. 2007;8:455–62.pl_PL
dc.referencesKopac T, Bozgeyik K. Effect of surface area enhancement on the adsorption of bovine serum albumin onto titanium dioxide. Coll Surf B. 2010;76:265–71.pl_PL
dc.referencesGłuszek J, Masalski J, Furman P, Nitsch K. Structural and electrochemical examinations of PACVD TiO2 films in Ringer solution. Biomaterials. 1997;18:789–94.pl_PL
dc.referencesShen GX, Chen YC, Lin L, Lin CJ, Scantlebury D. Study on a hydrophobic nano-TiO2 coating and its properties for corrosion protection of metals. Electrochim Acta. 2005;50:5083–9.pl_PL
dc.referencesShen GX, Chen YC, Lin CJ. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol–gel method. Thin Solid Films. 2005;489:130–6.pl_PL
dc.referencesShan CX, Hou X, Choy KL. Corrosion resistance of TiO2 films grown on stainless steel by atomic layer deposition. Surf Coat Technol. 2008;202:2399–402.pl_PL
dc.referencesAtik M, de Lima Neto P, Avaca LA, Aegerter MA. Sol-gel thin films for corrosion protection. Ceram Int. 1995;21:403–6.pl_PL
dc.referencesNazeri A, Trzaskoma-Paulette PP, Bauer D. Synthesis and properties of cerium and titanium oxide thin coatings for corrosion protection of 304 stainless steel. J Sol-Gel Sci Technol. 1997;10:317–31.pl_PL
dc.referencesKrishna DSR, Sun Y. Thermally oxidised rutile-TiO2 coating on stainless steel for tribological properties and corrosion resistance enhancement. Appl Surf Sci. 2005;252:1107–16.pl_PL
dc.referencesBalamurugan A, Kannan S, Rajeswari S. Evaluation of TiO2 coatings obtained using the sol–gel technique on surgical grade type 316L stainless steel in simulated body fluid. Mater Lett. 2005;59:3138–43.pl_PL
dc.referencesVasconcelos DCL, Nunes EHM, Sabioni ACS, da Costa JCD, Vasconcelos WL. Structural characterization and corrosion behavior of stainless steel coated with sol-gel titania. J Mater Eng Perform. 2012;21:411–7.pl_PL
dc.referencesEvans P, English T, Hammond D, Pemble ME, Sheel DW. The role of SiO2 barrier layers in determining the structure and photocatalytic activity of TiO2 films deposited on stainless steel. Appl Catal A. 2007;321:140–6.pl_PL
dc.referencesZhu Y, Zhang L, Wang L, Fu Y, Cao L. The preparation and chemical structure of TiO2 film photocatalysts supported on stainless steel substrates via the sol–gel method. J Mater Chem. 2001;11:1864–8.pl_PL
dc.referencesPiwon´ski I. Preparation method and some tribological properties of porous titanium dioxide layers. Thin Solid Films. 2007;515: 3499–506.pl_PL
dc.referencesFritz SE, Martin SM, Frisbie CD, Ward MD, Toney MF. Structural characterization of a pentacene monolayer on an amorphous SiO2 substrate with grazing incidence X-ray diffraction. J Am Chem Soc. 2004;126(13):4084–5.pl_PL
dc.referencesDutta P. Grazing incidence X-Ray diffraction. Curr Sci. 2000;78: 1478–83.pl_PL
dc.referencesKogan V, Bethke K, Vries R. Applying X-rays in material analysis. Nucl Instrum Method A. 2003;509:290–3.pl_PL
dc.referencesStoev KN, Samurai K. Review on grazing incidence X-ray spectrometry and reflectometry. Spectrochimi Acta B. 1999;54: 41–82.pl_PL
dc.referencesKolbe M, Beckhoff B, Krumrey M, Ulm G. Comparison of reference- free X-ray fluorescence analysis and X-ray reflectometry for thickness determination in the nanometer range. Appl Surf Sci. 2005;252:49–52.pl_PL
dc.referencesTato W, Landolt D. Electrochemical determination of the porosity of single and duplex PVD coatings of titanium and titanium nitride on brass. J Electrochem Soc. 1998;145:4173–81.pl_PL
dc.referencesDiaz B, Harkonen E, S ´ wiatowska J, Maurice V, Seyeux A, Marcus P, Ritala P. Low-temperature atomic layer deposition of Al2O3 thin coatings for corrosion protection of steel: surface and electrochemical analysis. Corros Sci. 2011;53:2168–75.pl_PL
dc.referencesASTM G 102–89. Standard practice for calculation of corrosion rates and related information from electrochemical measurements. 2004.pl_PL
dc.referencesTakemoto S, Hattori M, Yoshinari M, Kawada E, Oda Y. Corrosion behavior and surface characterization of titanium in solution containing fluoride and albumin. Biomaterials. 2005;26: 829–37.pl_PL
dc.referencesShibata T, Zhu YC. The effect of film formation conditions on the structure and composition of anodic oxide films on titanium. Corros Sci. 1995;37:253–70.pl_PL
dc.referencesSul YT, Johansson CB, Jeong Y, Albrektsson T. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys. 2001;23:329–46.pl_PL
dc.referencesSul YT, Johansson CB, Petronis S, Krozer A, Jeong Y, Wennerberg A, Albrektsson T. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials. 2002;23:491–501.pl_PL
dc.referencesSul YT. The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials. 2003;24:3893–907.pl_PL
dc.referencesPan J, Karlen C, Ulfvin C. Electrochemical study of resistance to localized corrosion of stainless steels for biomaterial applications. J Electrochem Soc. 2000;147:1021–5.pl_PL
dc.referencesOrnhagen C, Nilsson JO, Vannevik H. Characterization of a nitrogen-rich austenitic stainless steel used for osteosynthesis devices. J Biomed Mater Res. 1996;31:97–103.pl_PL
dc.referencesAntunes RA, de Oliveira MCL. Corrosion fatigue of biomedical metallic alloys: mechanisms and mitigation. Acta Biomater. 2012;8:937–62.pl_PL
dc.referencesErneman J, Schwind M, Liu P, Nilsson J-O, Andren H-O, Agren J. Precipitation reactions caused by nitrogen uptake during service at high temperatures of a niobium stabilised austenitic stainless steel. Acta Mater. 2004;52:4337–50.pl_PL
dc.referencesRobinson EW, Jack DH. Precipitation of Z-phase in a highnitrogen stainless steel. J Heat Treat. 1985;4:69–74.pl_PL
dc.referencesSourmail T. Precipitation in creep resistant austenitic stainless steels. Mater Sci Technol. 2001;17:1–14.pl_PL
dc.referencesGiordani EJ, Jorge AM Jr, Balancin O. Proportion of recovery and recrystallization during interpass times at high temperatures on a Nb- and N-bearing austenitic stainless steel biomaterial. Scr Mater. 2006;55:743–6.pl_PL
dc.referencesXu W, San Martin D, Rivera-Dı´az-del-Castillo PEJ, van der Zwaag S. Modelling chi-phase precipitation in high molybdenum stainless steels. Adv Mat Res. 2006;15-17:531–6.pl_PL
dc.referencesBurnat B. Investigation of electrochemical corrosion of FeCr biomedical alloys. PhD Thesis. University of Lodz. 2008.pl_PL
dc.contributor.authorEmailburnat@chemia.uni.lodz.plpl_PL
dc.identifier.doi10.1007/s10856-013-5099-7
dc.relation.volume25pl_PL


Pliki tej pozycji

Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa 3.0 Polska