dc.contributor.author | Minias, Alina E. | |
dc.contributor.author | Brzostek, Anna M. | |
dc.contributor.author | Korycka- Machala, Malgorzata | |
dc.contributor.author | Dziadek, Bozena | |
dc.contributor.author | Minias, Piotr | |
dc.contributor.author | Rajagopalan, Malini | |
dc.contributor.author | Madiraju, Murty | |
dc.contributor.author | Dziadek, Jaroslaw | |
dc.date.accessioned | 2015-09-02T08:05:50Z | |
dc.date.available | 2015-09-02T08:05:50Z | |
dc.date.issued | 2015-05-12 | |
dc.identifier.citation | Minias AE, Brzostek AM, Korycka- Machala M, Dziadek B, Minias P, Rajagopalan M, et al. (2015) RNase HI Is Essential for Survival of Mycobacterium smegmatis. PLoS ONE 10(5): e0126260. doi:10.1371/journal.pone.0126260 | pl_PL |
dc.identifier.issn | 1932-6203 | |
dc.identifier.uri | http://hdl.handle.net/11089/11627 | |
dc.description.abstract | RNases H are involved in the removal of RNA from RNA/DNA hybrids. Type I RNases H
are thought to recognize and cleave the RNA/DNA duplex when at least four ribonucleotides
are present. Here we investigated the importance of RNase H type I encoding genes
for model organism Mycobacterium smegmatis. By performing gene replacement through
homologous recombination, we demonstrate that each of the two presumable RNase H
type I encoding genes, rnhA and MSMEG4305, can be removed from M. smegmatis genome
without affecting the growth rate of the mutant. Further, we demonstrate that deletion
of both RNases H type I encoding genes in M. smegmatis leads to synthetic lethality. Finally,
we question the possibility of existence of RNase HI related alternative mode of initiation
of DNA replication in M. smegmatis, the process initially discovered in Escherichia coli. We
suspect that synthetic lethality of double mutant lacking RNases H type I is caused by formation
of R-loops leading to collapse of replication forks. We report Mycobacterium smegmatis
as the first bacterial species, where function of RNase H type I has been found
essential. | pl_PL |
dc.description.sponsorship | The study was supported by
POIG.01.01.02-10-107/09 project implemented under
Innovative Economy Operational Programme, years
2007–2013 "Studies of the molecular mechanisms at
the interface the human organism - the pathogen -
environmental factors" and by grant of Polish National
Center of Science 2011/01/N/NZ6/04186
“Identification of a novel mechanism of initiation of
DNA replication in Mycobacterium smegmatis”. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Public Library of Science | pl_PL |
dc.relation.ispartofseries | PLoS One;5 | |
dc.rights | Uznanie autorstwa 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/pl/ | * |
dc.title | RNase HI Is Essential for Survival of Mycobacterium smegmatis | pl_PL |
dc.type | Article | pl_PL |
dc.rights.holder | © 2015 Minias et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. | pl_PL |
dc.page.number | 1-20 | pl_PL |
dc.contributor.authorAffiliation | Minias Alina E., Institute of Medical Biology, Polish Academy of Sciences, Lodz | pl_PL |
dc.contributor.authorAffiliation | Brzostek Anna M., Institute of Medical Biology, Polish Academy of Sciences, Lodz | pl_PL |
dc.contributor.authorAffiliation | Korycka- Machala Malgorzata,Institute of Medical Biology, Polish Academy of Sciences, Lodz | pl_PL |
dc.contributor.authorAffiliation | Dziadek Bozena, Department of Immunoparasitology, University of Lodz | pl_PL |
dc.contributor.authorAffiliation | Minias Piotr, Department of Teacher Training and Biodiversity Studies, University of Lodz | pl_PL |
dc.contributor.authorAffiliation | Rajagopalan Malini, Department of Microbiology, University of Texas Health Center at Tyler, Tyler, Texas | pl_PL |
dc.contributor.authorAffiliation | Madiraju Murty, Department of Microbiology, University of Texas Health Center at Tyler, Tyler, Texas | pl_PL |
dc.contributor.authorAffiliation | Dziadek Jaroslaw, Institute of Medical Biology, Polish Academy of Sciences, Lodz | pl_PL |
dc.references | Lima WF, Rose JB, Nichols JG, Wu H, Migawa MT, Wyrzykiewicz TK, et al. The positional influence of the helical geometry of the heteroduplex substrate on human RNase H1 catalysis. Mol Pharmacol. 2007; 71: 73–82. doi: 10.1124/mol.106.025429 PMID: 17028157 | pl_PL |
dc.references | Shen Y, Koh KD, Weiss B, Storici F. Mispaired rNMPs in DNA are mutagenic and are targets of mismatch repair and RNases H. Nat Struct Mol Biol. 2012; 19: 98–104. doi: 10.1038/nsmb.2176 PMID: 22139012 | pl_PL |
dc.references | Lima WF, Rose JB, Nichols JG, Wu H, Migawa MT, Wyrzykiewicz TK, et al. Human RNase H1 discriminates between subtle variations in the structure of the heteroduplex substrate. Mol Pharmacol. 2007; 71: 83–91. doi: 10.1124/mol.106.025015 PMID: 17028158 | pl_PL |
dc.references | Nowotny M, Gaidamakov SA, Crouch RJ, Yang W. Crystal structures of RNase H bound to an RNA/ DNA hybrid: substrate specificity and metal-dependent catalysis. Cell. 2005; 121: 1005–1016. doi: 10. 1016/j.cell.2005.04.024 PMID: 15989951 | pl_PL |
dc.references | Murante RS, Henricksen LA, Bambara RA. Junction ribonuclease: An activity in Okazaki fragment processing. Proc Natl Acad Sci U S A. 1998; 95: 2244–2249. PMID: 9482870 | pl_PL |
dc.references | Eder PS, Walder RY, Walder JA. Substrate specificity of human RNase H1 and its role in excision repair of ribose residues misincorporated in DNA. Biochimie. 1993; 75: 123–126. PMID: 8389211 | pl_PL |
dc.references | Nossal NG, Dudas KC, Kreuzer KN. Bacteriophage T4 proteins replicate plasmids with a preformed R loop at the T4 ori(uvsY) replication origin in vitro. Mol Cell. 2001; 7: 31–41. PMID: 11172709 | pl_PL |
dc.references | Itoh T, Tomizawa J. Formation of an RNA primer for initiation of replication of ColE1 DNA by ribonuclease H. Proc Natl Acad Sci U S A. 1980; 77: 2450–2454. PMID: 6156450 | pl_PL |
dc.references | Lee DY, Clayton DA. Initiation of mitochondrial DNA replication by transcription and R-loop processing. J Biol Chem. 1998; 273: 30614–30621. PMID: 9804833 | pl_PL |
dc.references | Leela JK, Syeda AH, Anupama K, Gowrishankar J. Rho-dependent transcription termination is essential to prevent excessive genome-wide R-loops in Escherichia coli. Proc Natl Acad Sci U S A. 2013; 110: 258–263. doi: 10.1073/pnas.1213123110 PMID: 23251031 | pl_PL |
dc.references | Ginno PA, Lim YW, Lott PL, Korf I, Chédin F. GC skew at the 5’ and 3’ ends of human genes links Rloop formation to epigenetic regulation and transcription termination. Genome Res. 2013; 23: 1590– 1600. doi: 10.1101/gr.158436.113 PMID: 23868195 | pl_PL |
dc.references | Anupama K, Leela JK, Gowrishankar J. Two pathways for RNase E action in Escherichia coli in vivo and bypass of its essentiality in mutants defective for Rho-dependent transcription termination. Mol Microbiol. 2011; 82: 1330–1348. doi: 10.1111/j.1365-2958.2011.07895.x PMID: 22026368 | pl_PL |
dc.references | Pfeiffer V, Lingner J. TERRA promotes telomere shortening through exonuclease 1-mediated resection of chromosome ends. PLoS Genet. 2012; 8: e1002747. doi: 10.1371/journal.pgen.1002747 PMID: 22719262 | pl_PL |
dc.references | Balk B, Maicher A, Dees M, Klermund J, Luke-Glaser S, Bender K, et al. Telomeric RNA-DNA hybrids affect telomere-length dynamics and senescence. Nat Struct Mol Biol. 2013; 20: 1199–1205. doi: 10. 1038/nsmb.2662 PMID: 24013207 | pl_PL |
dc.references | Yu K, Chedin F, Hsieh C-L, Wilson TE, Lieber MR. R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nat Immunol. 2003; 4: 442–451. doi: 10.1038/ni919 PMID: 12679812 | pl_PL |
dc.references | Chon H, Sparks JL, Rychlik M, Nowotny M, Burgers PM, Crouch RJ, et al. RNase H2 roles in genome integrity revealed by unlinking its activities. Nucleic Acids Res. 2013; gkt027. doi: 10.1093/nar/gkt027 | pl_PL |
dc.references | Skourti-Stathaki K, Proudfoot NJ. A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev. 2014; 28: 1384–1396. doi: 10.1101/gad.242990. 114 PMID: 24990962 | pl_PL |
dc.references | Hiller B, Achleitner M, Glage S, Naumann R, Behrendt R, Roers A. Mammalian RNase H2 removes ribonucleotides from DNA to maintain genome integrity. J Exp Med. 2012; 209: 1419–1426. doi: 10. 1084/jem.20120876 PMID: 22802351 | pl_PL |
dc.references | Cerritelli SM, Crouch RJ. Ribonuclease H: the enzymes in eukaryotes. FEBS J. 2009; 276: 1494–1505. doi: 10.1111/j.1742-4658.2009.06908.x PMID: 19228196 | pl_PL |
dc.references | Arudchandran A, Cerritelli S, Narimatsu S, Itaya M, Shin DY, Shimada Y, et al. The absence of ribonuclease H1 or H2 alters the sensitivity of Saccharomyces cerevisiae to hydroxyurea, caffeine and ethyl methanesulphonate: implications for roles of RNases H in DNA replication and repair. Genes Cells Devoted Mol Cell Mech. 2000; 5: 789–802. PMID: 11029655 | pl_PL |
dc.references | Kochiwa H, Tomita M, Kanai A. Evolution of ribonuclease H genes in prokaryotes to avoid inheritance of redundant genes. BMC Evol Biol. 2007; 7: 128. doi: 10.1186/1471-2148-7-128 PMID: 17663799 | pl_PL |
dc.references | Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, et al. The complete genome sequence of Escherichia coli K-12. Science. 1997; 277: 1453–1462. PMID: 9278503 | pl_PL |
dc.references | Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature. 1997; 390: 249–256. doi: 10.1038/ 36786 PMID: 9384377 | pl_PL |
dc.references | Itaya M, Omori A, Kanaya S, Crouch RJ, Tanaka T, Kondo K. Isolation of RNase H genes that are essential for growth of Bacillus subtilis 168. J Bacteriol. 1999; 181: 2118–2123. PMID: 10094689 | pl_PL |
dc.references | Fukushima S, Itaya M, Kato H, Ogasawara N, Yoshikawa H. Reassessment of the in vivo functions of DNA polymerase I and RNase H in bacterial cell growth. J Bacteriol. 2007; 189: 8575–8583. doi: 10. 1128/JB.00653-07 PMID: 17905985 | pl_PL |
dc.references | Yao NY, Schroeder JW, Yurieva O, Simmons LA, O’Donnell ME. Cost of rNTP/dNTP pool imbalance at the replication fork. Proc Natl Acad Sci U S A. 2013; 110: 12942–12947. doi: 10.1073/pnas. 1309506110 PMID: 23882084 | pl_PL |
dc.references | Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006; 2: 2006.0008. doi: 10. 1038/msb4100050 PMID: 16738554 | pl_PL |
dc.references | Gerdes SY, Scholle MD, Campbell JW, Balázsi G, Ravasz E, Daugherty MD, et al. Experimental Determination and System Level Analysis of Essential Genes in Escherichia coli MG1655. J Bacteriol. 2003; 185: 5673–5684. doi: 10.1128/JB.185.19.5673–5684.2003 PMID: 13129938 | pl_PL |
dc.references | Kanaya S, Crouch RJ. The rnh gene is essential for growth of Escherichia coli. Proc Natl Acad Sci U S A. 1984; 81: 3447–3451. PMID: 6233609 | pl_PL |
dc.references | Horiuchi T, Maki H, Sekiguchi M. RNase H-defective mutants of Escherichia coli: a possible discriminatory role of RNase H in initiation of DNA replication. Mol Gen Genet MGG. 1984; 195: 17–22. PMID: 6092845 | pl_PL |
dc.references | Torrey T, Atlung T, Kogoma T. dnaA suppressor (dasF) mutants of Escherichia coli are stable DNA replication (sdrAlrnh) mutants. Mol Gen Genet MGG. 1984; 196: 350–355. PMID: 6092872 | pl_PL |
dc.references | Bayliss CD, Sweetman WA, Moxon ER. Destabilization of tetranucleotide repeats in Haemophilus influenzae mutants lacking RnaseHI or the Klenow domain of PolI. Nucleic Acids Res. 2005; 33: 400–408. doi: 10.1093/nar/gki180 PMID: 15653640 | pl_PL |
dc.references | Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998; 393: 537–544. doi: 10. 1038/31159 PMID: 9634230 | pl_PL |
dc.references | Watkins HA, Baker EN. Structural and functional characterization of an RNase HI domain from the bifunctional protein Rv2228c from Mycobacterium tuberculosis. J Bacteriol. 2010; 192: 2878–2886. doi: 10.1128/JB.01615-09 PMID: 20363939 | pl_PL |
dc.references | Dawes SS, Crouch RJ, Morris SL, Mizrahi V. Cloning, sequence analysis, overproduction in Escherichia coli and enzymatic characterization of the RNase HI from Mycobacterium smegmatis. Gene. 1995; 165: 71–75. PMID: 7489919 | pl_PL |
dc.references | Murdeshwar MS, Chatterji D. MS_RHII-RSD, a Dual-Function RNase HII-(p)ppGpp Synthetase from Mycobacterium smegmatis. J Bacteriol. 2012; 194: 4003–4014. doi: 10.1128/JB.00258-12 PMID: 22636779 | pl_PL |
dc.references | Schultz J, Milpetz F, Bork P, Ponting CP. SMART, a simple modular architecture research tool: Identification of signaling domains. Proc Natl Acad Sci U S A. 1998; 95: 5857–5864. PMID: 9600884 | pl_PL |
dc.references | Corpet F. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 1988; 16: 10881–10890. PMID: 2849754 | pl_PL |
dc.references | Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014; 42: W320–W324. doi: 10.1093/nar/gku316 PMID: 24753421 | pl_PL |
dc.references | Parish T, Stoker NG. Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiol Read Engl. 2000; 146 (Pt 8): 1969– 1975. PMID: 10931901 | pl_PL |
dc.references | Korycka-Machala M, Brzostek A, Rozalska S, Rumijowska-Galewicz A, Dziedzic R, Bowater R, et al. Distinct DNA repair pathways involving RecA and nonhomologous end joining in Mycobacterium smegmatis. FEMS Microbiol Lett. 2006; 258: 83–91. doi: 10.1111/j.1574-6968.2006.00199.x PMID: 16630260 | pl_PL |
dc.references | Dziadek J, Rajagopalan M, Parish T, Kurepina N, Greendyke R, Kreiswirth BN, et al. Mutations in the CCGTTCACA DnaA box of Mycobacterium tuberculosis oriC that abolish replication of oriC plasmids are tolerated on the chromosome. J Bacteriol. 2002; 184: 3848–3855. PMID: 12081955 | pl_PL |
dc.references | Greendyke R, Rajagopalan M, Parish T, Madiraju MVVS. Conditional expression of Mycobacterium smegmatis dnaA, an essential DNA replication gene. Microbiol Read Engl. 2002; 148: 3887–3900. PMID: 12480893 | pl_PL |
dc.references | Korycka-Machala M, Rychta E, Brzostek A, Sayer HR, Rumijowska-Galewicz A, Bowater RP, et al. Evaluation of NAD+-Dependent DNA Ligase of Mycobacteria as a Potential Target for Antibiotics. Antimicrob Agents Chemother. 2007; 51: 2888–2897. doi: 10.1128/AAC.00254-07 PMID: 17548501 | pl_PL |
dc.references | Petrov DA, Hartl DL. Pseudogene evolution and natural selection for a compact genome. J Hered. 2000; 91: 221–227. PMID: 10833048 | pl_PL |
dc.references | Amin AG, Goude R, Shi L, Zhang J, Chatterjee D, Parish T. EmbA is an essential arabinosyltransferase in Mycobacterium tuberculosis. Microbiol Read Engl. 2008; 154: 240–248. doi: 10.1099/mic.0.2007/ 012153-0 | pl_PL |
dc.references | Williams A, Güthlein C, Beresford N, Böttger EC, Springer B, Davis EO. UvrD2 is essential in Mycobacterium tuberculosis, but its helicase activity is not required. J Bacteriol. 2011; 193: 4487–4494. doi: 10. 1128/JB.00302-11 PMID: 21725019 | pl_PL |
dc.references | Kuron A, Korycka-Machala M, Brzostek A, Nowosielski M, Doherty A, Dziadek B, et al. Evaluation of DNA primase DnaG as a potential target for antibiotics. Antimicrob Agents Chemother. 2014; 58: 1699–1706. doi: 10.1128/AAC.01721-13 PMID: 24379196 | pl_PL |
dc.references | Kogoma T. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev MMBR. 1997; 61: 212–238. PMID: 9184011 | pl_PL |
dc.references | Kogoma T, Maldonado RR. DNA polymerase I in constitutive stable DNA replication in Escherichia coli. J Bacteriol. 1997; 179: 2109–2115. PMID: 9079893 | pl_PL |
dc.references | Itaya M, Crouch RJ. A combination of RNase H (rnh) and recBCD or sbcB mutations in Escherichia coli K12 adversely affects growth. Mol Gen Genet MGG. 1991; 227: 424–432. PMID: 1650908 | pl_PL |
dc.references | Hong X, Cadwell GW, Kogoma T. Escherichia coli RecG and RecA proteins in R-loop formation. EMBO J. 1995; 14: 2385–2392. PMID: 7774596 | pl_PL |
dc.references | Sandler SJ. Requirements for replication restart proteins during constitutive stable DNA replication in Escherichia coli K-12. Genetics. 2005; 169: 1799–1806. doi: 10.1534/genetics.104.036962 PMID: 15716497 | pl_PL |
dc.references | Sandler SJ. Multiple genetic pathways for restarting DNA replication forks in Escherichia coli K-12. Genetics. 2000; 155: 487–497. PMID: 10835375 | pl_PL |
dc.references | Mahdi AA, Buckman C, Harris L, Lloyd RG. Rep and PriA helicase activities prevent RecA from provoking unnecessary recombination during replication fork repair. Genes Dev. 2006; 20: 2135–2147. doi: 10.1101/gad.382306 PMID: 16882986 | pl_PL |
dc.references | Boubakri H, de Septenville AL, Viguera E, Michel B. The helicases DinG, Rep and UvrD cooperate to promote replication across transcription units in vivo. EMBO J. 2010; 29: 145–157. doi: 10.1038/emboj. 2009.308 PMID: 19851282 | pl_PL |
dc.references | Baharoglu Z, Lestini R, Duigou S, Michel B. RNA polymerase mutations that facilitate replication progression in the rep uvrD recF mutant lacking two accessory replicative helicases. Mol Microbiol. 2010; 77: 324–336. doi: 10.1111/j.1365-2958.2010.07208.x PMID: 20497334 | pl_PL |
dc.references | Howard JAL, Delmas S, Ivančić-Baće I, Bolt EL. Helicase dissociation and annealing of RNA-DNA hybrids by Escherichia coli Cas3 protein. Biochem J. 2011; 439: 85–95. doi: 10.1042/BJ20110901 PMID: 21699496 | pl_PL |
dc.references | Seigneur M, Bidnenko V, Ehrlich SD, Michel B. RuvAB acts at arrested replication forks. Cell. 1998; 95: 419–430. PMID: 9814711 | pl_PL |
dc.references | Aguilera A, García-Muse T. R loops: from transcription byproducts to threats to genome stability. Mol Cell. 2012; 46: 115–124. doi: 10.1016/j.molcel.2012.04.009 PMID: 22541554 | pl_PL |
dc.references | Ogawa T, Okazaki T. Function of RNase H in DNA replication revealed by RNase H defective mutants of Escherichia coli. Mol Gen Genet MGG. 1984; 193: 231–237. PMID: 6319961 | pl_PL |
dc.references | Okazaki R, Arisawa M, Sugino A. Slow Joining of Newly Replicated DNA Chains in DNA Polymerase IDeficient Escherichia coli Mutants*. Proc Natl Acad Sci U S A. 1971; 68: 2954–2957. PMID: 4943548 | pl_PL |
dc.references | Olivera BM, Bonhoeffer F. Replication of Escherichia coli requires DNA polymerase I. Nature. 1974; 250: 513–514. doi: 10.1038/250513a0 PMID: 4620020 | pl_PL |
dc.references | Griffin JE, Gawronski JD, Dejesus MA, Ioerger TR, Akerley BJ, Sassetti CM. High-resolution phenotypic profiling defines genes essential for mycobacterial growth and cholesterol catabolism. PLoS Pathog. 2011; 7: e1002251. doi: 10.1371/journal.ppat.1002251 PMID: 21980284 | pl_PL |
dc.references | Zwietering MH, Jongenburger I, Rombouts FM, van ‘t Riet K. Modeling of the Bacterial Growth Curve. Appl Environ Microbiol. 1990; 56: 1875–1881. PMID: 16348228 | pl_PL |
dc.references | Ogawa T, Pickett GG, Kogoma T, Kornberg A. RNase H confers specificity in the dnaA-dependent initiation of replication at the unique origin of the Escherichia coli chromosome in vivo and in vitro. Proc Natl Acad Sci U S A. 1984; 81: 1040–1044. PMID: 6322184 | pl_PL |
dc.references | De Massy B, Fayet O, Kogoma T. Multiple origin usage for DNA replication in sdrA(rnh) mutants of Escherichia coli K-12. Initiation in the absence of oriC. J Mol Biol. 1984; 178: 227–236. PMID: 6387151 | pl_PL |
dc.references | Kogoma T, Barnard KG, Hong X. RecA, Tus protein and constitutive stable DNA replication in Escherichia coli rnhA mutants. Mol Gen Genet MGG. 1994; 244: 557–562. PMID: 8078483 | pl_PL |
dc.references | Kogoma T, von Meyenburg K. The origin of replication, oriC, and the dnaA protein are dispensable in stable DNA replication (sdrA) mutants of Escherichia coli K-12. EMBO J. 1983; 2: 463–468. PMID: 11894964 | pl_PL |
dc.references | Ilina T, LaBarge K, Sarafianos SG, Ishima R, Parniak MA. Inhibitors of HIV-1 Reverse Transcriptase— Associated Ribonuclease H Activity. Biology. 2012; 1: 521–541. doi: 10.3390/biology1030521 PMID: 23599900 | pl_PL |
dc.references | Davis CA, Parniak MA, Hughes SH. The effects of RNase H inhibitors and nevirapine on the susceptibility of HIV-1 to AZT and 3TC. Virology. 2011; 419: 64–71. doi: 10.1016/j.virol.2011.08.010 PMID: 21907380 | pl_PL |
dc.contributor.authorEmail | alinagorna@gmail.pl | pl_PL |
dc.contributor.authorEmail | jdziadek@cbm.pan.pl | pl_PL |
dc.identifier.doi | 10.1371/journal.pone.0126260 | |
dc.relation.volume | 10 | pl_PL |