Pokaż uproszczony rekord

dc.contributor.authorTrzpiot, Grażyna
dc.date.accessioned2015-06-22T10:00:42Z
dc.date.available2015-06-22T10:00:42Z
dc.date.issued2013
dc.identifier.issn0208-6018
dc.identifier.urihttp://hdl.handle.net/11089/10049
dc.description.abstractWe present in this paper a few important direction on research using quantile regression. We start from some motivation for this method of regression. Secondly we present some main areas of application this method. Finally we wanted to point out transformation of the main model. This model, introduced by Powell (1991) and further analyzed by Chamberlain (1994) and Buchinsky (1995), specifies the conditional quantiles of the Box-Cox transformation of the variable under appraisal as a linear function of the covariates. It provides, within a simple set-up, the needed flexibility, as both the transformation parameter and the coefficients of the linear function are allowed to vary freely at each point of the distribution. The Box-Cox quantile regression, which has the linear and log-linear models as particular cases, will provide, therefore, a direct answer to the question of the appropriate transformation to be used.pl_PL
dc.description.abstractPrzedstawiamy artykuł, w którym omawiamy modele regresji kwantylowej. Omawiamy motywacje dla stosowania klasycznego modelu, jak również główne kierunki zastosowań regresji kwantylowej. Następnie przechodzimy do transformacji podstawowego modelu. Ten model jest wprowadzony przez Powell’a (1991) a kolejno analizowany przez Chamberlain’a (1994) i Buchinsky’ego (1995), wprowadzono specyficzne warunkowe kwantyle znane jako transformacja Box– Cox’a. Omawiamy estymację modeli oraz testy istotności.pl_PL
dc.language.isoenpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Oeconomica;285
dc.subjectquantile regressionpl_PL
dc.subjectquantile regression modelpl_PL
dc.subjectBox-Cox transformationpl_PL
dc.titleProperties of Transformation Quantile Regression Modelpl_PL
dc.title.alternativeWłasności transformacji modelu regresji kwantylowejpl_PL
dc.typeArticlepl_PL
dc.page.number[125]-137pl_PL
dc.contributor.authorAffiliationUniversity of Economics in Katowicepl_PL
dc.referencesAltman, N. S. (1990) Kernel smoothing of data with correlated errors. J. Am. Statist. Ass., 85, 749–759pl_PL
dc.referencesBassett G.W., Chen H. (2001) Portfolio style: return-based attribution using quantile regression. Emp. Econ., 26: 293–305pl_PL
dc.referencesBox G., Cox D. 1964. An analysis of transformations revisited. Journal of the Royal Statistical Society, Series B 26: 211–252pl_PL
dc.referencesBuchinsky M. (1995) Quantile regression, Box-Cox transformation model and the U.S. wage structure,1963– 1987. J. Econometr., 65: 109–154pl_PL
dc.referencesCai Z. (2002) Regression quantiles for time series. Econometr. Theory, 18, 169–192pl_PL
dc.referencesChamberlain G. (1994). Quantile regression, censoring and the structure of wages. In Advances in Econometrics, Sims C (eds), Cambridge University Press: New York; 171–209pl_PL
dc.referencesCole T. J. (1988). Fitting smoothed centile curves to reference data (with discussion). J. R. Statist. Soc. A, 151: 385–418pl_PL
dc.referencesCole T. J. , Green P. J. (1992) Smoothing reference centile curves: the LMS method and penalized likelihood. Statist. Med., 11: 1305–1319pl_PL
dc.referencesCrowley J., Hu M. (1977) Covariance analysis of heart transplant data. J. Am. Statist. Ass., 72: 27–36pl_PL
dc.referencesFitzenberger B. (1998). The moving blocks bootstrap and robust inference for linear least squares and quantile regressions. Journal of Econometrics 82: 235–287pl_PL
dc.referencesGannoun A., Saracco J., Yu K. (2003) Nonparametric prediction by conditional median and quantiles. J. Statist. Planng Inf., to be publishedpl_PL
dc.referencesHahn J. (1995). Bootstrapping quantile regression estimators. Econometric Theory 11: 105–121pl_PL
dc.referencesHendricks,W. , Koenker,R. (1992) Hierarchical spline models for conditional quantiles and the demand for electricity. J. Am. Statist. Ass., 93: 58–68pl_PL
dc.referencesHull J., White A. (1998) Value at risk when daily changes in market variables are not normally distributed. J. Deriv., 5: 9–19pl_PL
dc.referencesKoenker R. 1994. Confidence intervals for regression quantiles. In Asymptotic Statistics: Proceedings of the 5th Prague Symposium, Mandl P, Huskova M (eds), Physica-Verlag: Berlinpl_PL
dc.referencesKoenker R. and Geling R. (2001) Reappraising med fly longevity: a quantile regression survival analysis. J. Am. Statist. Ass., 96: 458–468pl_PL
dc.referencesKoenker R., Machado J. (1999) Goodness of fit and related inference processes for quantile regression. J. Am. Statist. Ass., 94: 1296–1309pl_PL
dc.referencesKoenker R., Park B.J. (1996). An interior point algorithm for nonlinear quantile regression. J. Econometr.,71: 265–283pl_PL
dc.referencesKoenker R. W., D’Orey V. (1987) Algorithm AS 229: Computing regression quantiles. Appl. Statist., 36: 383–393pl_PL
dc.referencesKoenker R., Portnoy S., Ng P. (1992) Nonparametric Estimation of Conditional Quantile Functions: L1 Statistical Analysis and Related Methods (ed. Y. Dodge),pp . 217–229. Amsterdam: Elsevierpl_PL
dc.referencesKottas A., Gelfand A. E. (2001) Bayesian semiparametric median regression model. J. Am. Statist. Ass., 96: 1458–1468pl_PL
dc.referencesLauridsen S. (2000) Estimation of value of risk by extreme value methods. Extremes, 3: 107–144pl_PL
dc.referencesPortnoy S. and Koenker R. (1997) TheGaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators (with discussion). Statist. Sci., 12: 279–300pl_PL
dc.referencesPowell J. (1991). Estimation of monotonic regression models under quantile restrictions. In Nonparametric and Semiparametric Methods in Econometrics and Statistics: Proceedings of the Fifth International Symposium on Economic Theory and Econometrics, Barnett W., Powell J., Tauchen G (eds), Cambridge University Press: New York; 357–384pl_PL
dc.referencesRoyston P., Altman D.G. (1994) Regression using fractional polynomials of continuous covariates: parsimonious parametric modelling (with discussion). Appl. Statist., 43: 429–467pl_PL
dc.referencesRoyston P., Wright E. M. (2000) Goodness-of-fit statistics for age-specific reference intervals. Statist. Med., 19: 2943–2962pl_PL
dc.referencesTaylor J. (1999) A quantile regression approach to estimating the distribution of multiperiod returns. J. Deriv., 24: 64–78pl_PL
dc.referencesTrzpiot G. (2007) Regresja kwantylowa a estymacja VaR, Prace Naukowe AE Wrocław, 1176, Wrocławpl_PL
dc.referencesTrzpiot G. (2009). Application weighted VaR in capital allocation, Polish Journal of Environmental Studies, Vol 18, No. 5B: 203–208pl_PL
dc.referencesTrzpiot G. (2009). Estimation methods for quantile regression, Studia Ekonomiczne 53: 81–90, Zeszyty Naukowe AE Katowicepl_PL
dc.referencesYang S. (1999) Censored median regression using weighted empirical survival and hazard functions. J. Am. Statist. Ass., 94: 137–145pl_PL


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord