dc.contributor.author | Żądło, Tomasz | |
dc.date.accessioned | 2015-06-22T09:41:56Z | |
dc.date.available | 2015-06-22T09:41:56Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 0208-6018 | |
dc.identifier.uri | http://hdl.handle.net/11089/10037 | |
dc.description.abstract | The problem of modeling longitudinal profiles is considered assuming that the
population and elements’ affiliation to subpopulations may change in time. Some longitudinal
model which is a special case of the general linear model (GLM) and the general linear mixed
model (GLMM) is studied. In the model two random components are included under assumptions
of simultaneous spatial autoregressive process (SAR) and temporal first-order autoregressive
process (AR(1)) respectively. The accuracy of model parameters’ restricted maximum likelihood
estimators is considered in the simulation. | pl_PL |
dc.description.abstract | Rozważany jest problem modelowania profili wielookresowych zakładając, że populacja
i przynależność elementów domen mogą zmieniać się w czasie. Proponowany model jest
przypadkiem szczególnym ogólnego modelu liniowego i ogólnego mieszanego modelu liniowego.
W modelu tym uwzględniono dwa wektory składników losowych spełniające odpowiednio
założenia przestrzennego modelu autoregresyjnego i modelu autoregresyjnego rzędu pierwszego w
czasie. W symulacji rozważano dokładność estymatorów parametrów modelu uzyskanych metodą
największej wiarygodności z ograniczeniami. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartofseries | Acta Universitatis Lodziensis. Folia Oeconomica;285 | |
dc.subject | longitudinal data | pl_PL |
dc.subject | restricted maximum likelihood | pl_PL |
dc.subject | MSE | pl_PL |
dc.title | On Parameter Estimation of Some Longitudinal Model | pl_PL |
dc.title.alternative | O estymacji parametrów pewnego modelu dla danych wielookresowych | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | [61]-68 | pl_PL |
dc.contributor.authorAffiliation | Katowice, University of Economics, Department of Statistics | pl_PL |
dc.references | Chandra H., Salvati N., Chambers R. (2007), Small area estimation for spatially correlated populations – a comparison of direct and indirect model-based methods. Statistics in Transition, 8(2): 331–350 | pl_PL |
dc.references | Datta G. S., Lahiri P. (2000), A unified measure of uncertainty of estimated best linear unbiased predictors in small area estimation problems, Statistica Sinica, 10, 613–627 | pl_PL |
dc.references | Hedeker D., Gibbons R.D. (2006), Longitudinal Data Analysis. New Jersey: John Wiley | pl_PL |
dc.references | Jiang, J. (1996), REML estimation: Asymptotic behavior and related topics, The Annals of Statistics, 24, 255–286 | pl_PL |
dc.references | Molina I., Salvati, N., Pratesi M. (2009), Bootstrap for estimating the MSE of the Spatial EBLUP. Computational Statistics, 24: 441–458 | pl_PL |
dc.references | Petrucci A., Salvati N. (2006), Small area estimation for spatial correlation in watershed erosion assessment. J Agric Biol Environ Stat, 11:169–182 | pl_PL |
dc.references | Petrucci A., Pratesi M., Salvati N. (2005), Geographic information in small area estimation: small area models and spatially correlated random area effects. Statistics in Transition, 7(3): 609–623 | pl_PL |
dc.references | Pratesi M., Salvati N. (2008), Small area estimation: the EBLUP estimator based on spatially correlated random area effects. Stat Methods Appl, 17: 113–141 | pl_PL |
dc.references | R Development Core Team (2011), A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna | pl_PL |
dc.references | Salvati N., Pratesi M., Tzavidis N., Chambers R. (2009), Spatial M-quantile models for small area estimation. Statistics in Transition, 10(2), 251–261 | pl_PL |
dc.references | Thompson W.A., Jr. (1962), The problem of negative estimates of variance components, Annals of Mathematical Statistics, 33, 273–289 | pl_PL |
dc.references | Verbeke G., Molenberghs G. (2000), Linear Mixed Models for Longitudinal Data, New York: Springer-Verlag | pl_PL |