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SOME NOTES ON APPLICABILITY
OF VARIANCE-DECOMPOSITION-PROPORTIONS METHOD

1. Introduction

Let us consider the equation of linear regression of the form

Y-BO*B‘1I1 * oo +kak+g. (1)

where X = [X,, X,y ssey X;] 18 a random vector of explanatory
variables, Y is an explained variable and & is a disturbance term.
e mgsume about these random variables the following: X is nor=
mally distributed with the expected value E(X) = p = (s By »20e
Wi ] and with the variance-covariance matrix (X) = ¥ ; § ls nor-
mally distributed with the expected value (%)= O and the varian=-
ce var (&) = 62; %Lis independent from X. Consequently,the depen=
dent variable Y is normally distributed with the expected value
E(Y) = p’{ix + p, and variance var(Y) = ll,’: Eﬂx + 62, where [, =
= [Bqs Bos seey By)s &, 9 are the operators of expected value
And variance-covariance.

Parameters @, P4, ¢ee, P, of the model (1) can be estimated
when we have a matrix of sample observations on explanatory
variables and a vector of sample observations on explained varia-
ble. Under the assumption that the matrix of observations on
€xplanatory variables is a fixed, not-random matrix we can obtain
the following model

ax o (AOXCHD g ¥ . wp 42,k Sk+ 1, 0= 0, (2)
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Py = By (5B, 6°1)),
where xnx(kﬂ) -~ a get of real n x k + 1 matrices, § -~ a proba+
bility space with the complete measure #, == [1 i x|, 1 = the
colunn vector of units, x € .R.m - a matrix of observations on
explanatory variaebles, p= [ﬁo By s '(3 € .‘R,(k”)ﬁ - vector of 'pa-
rameters, ¥, & - random n x 1 vectors, k, = rank(s), n, = rank
(2(¥)) ., :

The model (2) can be treated as a sample realization of the
model (1).

Now we carry out the process of standardizationithe model (1)
with respect to theoretical means and covariances, the model (2)
with respect to sample means and covariances. We obtain the
following forms of standardized versions of considered relations:

VAIER % o+ SUSSE A SN A (1a)

X, - u Y -

where J = N (0, 1), 1 =1, k R
s e Tl S U

€ 2
g 64
e ""%*<°' A & Tt

A(x*) = &' 3 &'- a matrix of simple correlation coefficients

between variables Xi, i =1, k3

oumo .<&nxk. 89 X x*‘!;’ + 8% k, Sk, n,< n,
¥ p¥ 62
c?Y«- = OJY*(I px, -g'l) * (2a)
where X* = Mx(D") =1, Y* = —}; MY, M=I =11-1
D=(a,.]4i, §=1, Ka+x'lx, D* = dia (de d‘/2>
L 13] ’ ’ n s 8\447 » vees G )

dy =\l %y’ny, y - & sample realization of the random vector Y,
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% x"'x"- amatrix of sample simple correlation coefficients between

variables X,, 1 = 1, k.

The standardized versions (1a) or (2a) are usually the base
to study the problem of extreme dependencies among explanatory
variables ocalled multicollinearity problem. In general the main
‘effects of standardization of the equation (1) is reparametriza-
tion and the fact that the variance-covariance matrix ZI becomes
the matrix of simple correlation coefficients. For the model (2)
the effect of standardization is much deeper - we observe a change
of parameter vector, matrix % x"'x"™ becomes simple sample correla-
tion matrix and additionally the normal distribution of the vector
Y changes to singular normal of the vector ¥* bvecause of idempo=-
tency of the matrix M.

3. Multicollinearity - diagnostical measures

Standarization reduces all model variables to the same scale.
Purther on, we analyze problems of interdependencies among model
variables on the basis of standardized versiona (1a) and (2a).
In the case of (1a), we can speak about stochastical multicolli-
nearity when rank (X*)<k. In the case of (2a), we can speak
8bout numerical multicollinearity when rank (x"'x")<k. We have
to mention that if we are dealing with stochastical multicolli-
Nearity in the (1a) then in its sample realization model (2a)
there will appear numerical multicollinearity with probability
one., On the other hand, if one 1is dealing with numerical multi-
collinearity in the case of (2a) there is no certainty whether it
18 caused by statistical dependency among variables X,, i = 1, k
Or whether it is a property of the individual sample matrix of
Statistical data (in the sense that expanding the matrix x" by
& new row of observations on explanatory variables we can get rid
0ff multicollinearity problem). The problem of non~full rank of
the x*'x* matrix 48 related to exact linear dependency between
eolumns of the matrix x*. The parameters of this linedr relation=
8hip are the elements of the eigen vector of x"'x" matrix connec~
ted with the eigen value equal to zero. It can be easily shown by
Using the matrix x*' x* spectral decomposition.
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Let A = diag (Aq, ey 1)) De the diagonal matrix with the
eigen values of x"'x" on the main diagonal and Ve [veen

'k] € AX%E 1o the matrix of nomalizod eigen vectors correspond-
ing to 11. seey lko It hOl‘l

Am= V'x¥'x"V (3)

by =(x"vy) (=vy) » ; @ i 'r:)? gaTE.

The .1n¢u.1n'1ty of x"'x* matrix means that at least one of
eigen values AJ j =1, k, say A o is equal to zero. Therefore

I'OQZ‘Z}H‘,' - 0, (4)

which means that the elements v, r = 7, k are the parameters of
linear relationship between columns of x".

The exact multicollinearityis a rare phenomenon in econometri-
cal models. We are dealing mostly with near-multicollinearity
problems. We can apply various measures of the sastrength of near-
multicollinearity. These measures can be divided into two groupst
numerical and stctistioal. Numerical measures are based on condi-
tion number of x*x* and x* matrix. As a condition number we use

(see Belsley, Kuh, Welsoch 1980)

w(x*) = Pz \Rmnﬁ—:--%—)y ()

where A &z(‘l*’!*) and Am(x":*) are respectively the maximal
and minimal eigen value of x"
Among statistical measures we distinguish:
- gimple correlation coefficients ryy (the elements of 1: x*
matrix),
- partial correlation coefficients l!’.3
-rtd (6)

R -
1 t
J (11 7/.33
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where r+J g (1, J) element of ;11- (x*'x") '1.
- pample multiple correlation coefficients R'.l between I1

i=1, k and other explanatory variables,
‘= variance inflation factors (VIF)

i 1
gt |
-~ measure based on additional contributions of variables (see
Thetil 1971) ;

k
C-RZ-JZ((Rz-Ri), (8)

where R 1is multiple correlation coefficient between Y and X =
- {11, seey xk} and RJ is multiple correlation coefficient between
Y and x\{xj}.

The coefficients Ty and Ry, give us very small amount of
information in the case when more gmm two of explanatory varia-
bles (columns of x*) participate in the relationship.Additionally
when at least one eigen value of x"'x" tends to zero all Ry
are effected in the sense that V 1,] 1]_._1:0 R“ = +1, which can
be easily shown applying spectral deoomp:nition (see K o n a=-
TZewska, M11lo 1982), Greater amount of information can
be obtained from the analysis of Ry and VIP, 1 = 1, k about the
8trength of dependencies and variables included.We have to notice
that R = max R, is a bounded measure in the range (0, 1) hut

the 1imit for each VIP, when A—~0 and v,  # 0 is +c.The measu-

Te 5 developed by T h e 1 1 (1971) is bounded in the range(-k +

*+ 1,0) and is zero in the case of orthogonality of x"'x* and.
“k + 1 in the case of extreme multicollinearity. Both two groups

of multicollinearity measures are useful in determining the number

end strength of relationships among explanatory variables.However,
the analysis of eigen values and eigen vectors of x* x* matrix

8lves us the possibility to go deeper into the nature and con= |
8equences of the observed dependencies.
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3. Varianca-Decomposition-Progon1onn Method

The method allows us to find

- the number of relationships among columns of x*,

- which variables (columns of x*) are involved in an indivi-
dual relationship,

- which of the model parameters can be estimated by least
squares method without great imprecision. b

The method was firstly described and analyzed by B e 1 a~-
ley, Kuh,Welsch (1980). The main idea of this method,
called variance-decomposition proportions method, is as follows.

Let us rewrite the estimated sample variance of the estimator

b} = (z"’:’);’z*’t“,

where (l"'x")I1 = [rﬂ cos r""]. in the form

k2
o%(vy) = 82:1 0 82 }° 3. (9)
1s=1

where 22 1s an estimated variance of disturbance term,
We construct a matrix I as the matrix with the elements 11’11.

where:

: Vi /Ay
R
Z, vir/ My

r=1

. (10)

Ty
k

It caa be noticed that V i Z‘ ﬂli = 1, For  nmatrices x*
1=

with mutually orthogonal columns it holds T = Ik‘ For an example
we can consider the matrix I of the form

n | var(v]) | var(by) | var(b3)
72 0 0.01 0.1
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where /N 1 =1, 3 are condition indexes defined as followg:

i (m*p®) 3 4

e = A Zg"g'i r=1, k. (11
r 2o

The maximal condition index is, by definition, equal to the
matrix x* condition number X(x™),

If v 4 1s "great" (what means that p, is greater than 15) we
can say that among the explanatory variables exists one dependen-
¢y (Belsley, Kuh,Welsoch 1980) state that as the
multiple correlation coefficients which characterize the depend-
ency increase along the progression <.9,.9, 99, «999, .9999, ...
the condition indexes increase along the progression 3, 10, 30,
100, 300, «.. This dependency is between X, and X, and effects
Variances of estimators b; and b;.conorally steps of the variance-
~décomposition proportions method can be summarized as follows:

1. Standardization of matrix =.

2. Computing condition number and condition indexes X(x™), Ny
re TR

3. Choice of limit values p"and TYf.i. 7p*= 15, = 0.5).

4. Computing T matrix.

5. Examining elements of rows of 7 corresponding to Ny > ™
1f there exist at least two of them for which L >Jr%

Existence of one relationship causes no problems for diagnos-
1s. Problems arise when two or more relationships coexist. The
first kind of problems is with dominating dependencies (one of
"great" condition indexes is much higher than others "great" con-
dition indexes). The second kind of problems is with competing
dependencies (two or more "great" condition indexes with similar
Condition indexes). To solve the arising problems one has to
bufla auxiliary regressions to check which variables are involved
in which relationship. .

In our opinion variance-decomposition proportions method
in spite of the above mentioned problems is & supreme one in com=-
Parison with the methods based on the analysis of multiple cor-
Telation coefficients because it gives us deeper insight into the
Dature of dependencies and possibility of quantification of near-
"“llticollinearity consequences on estimation precision. We should
Bot forget about the second factor of sample estimator’s variance
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= 82, Although the estimated variance can be extended by the com-
ponent connected with high condition 1index, at the .amo time 1t
may be shrunken towards zero by near-zero value of 82(4n the case
of very high value of a e

Now, we will show two practical examples of variance-decom-
position proportions method to following equations:

I PSQPP, = f, (PSQPP,_,, WUQP,, PYPRy, U75), t = 1963-1977,

II xﬁunt = 12 (KQ"Mt. luquto T), t = 1961-1979,
where: FSQPP - means monthly wage in fuel and ‘power industries,
WUQF -« productivity of work in fuel and power industries, PYPR -
index of living costs of mean employees family, XQMH - 1n of pro-
duction in metalurgic, chemical and mineral industries (m.c.m.),
KQMW - 1n of productive ocapital stook in m.c.m. industries, WUQM
- number of employees in m.c.m. industries, ln, T « time trend,
U75 = dummy variable = U75 = 1 in 1975, U75 = O in other years of
psample period.

Vle obtained the following resulta:

I.
(1.0000
0.9201 1,0000

X X =10,9043 0.9404 1.0000
0.3029 0.3098  0.2984 ~ 1.0000 |

7 by b2 b3 by
1.0000| 0,0032 . | 0.0114 0.0024 0.0186
5.8290| 0.0893 0.8399 0.0210 0.0020

1.8734| 0.0008 0.0022 | 0.0007 | 0.9758

We can observe one not very strong dependency between !BQPPt 1
and PYPR,.Only var(b1) and var(b*) are effected by this relation-
ship.

II.
1.0000
x'x* = | 0,9281  1,0000
0.9982 0,9488 1.000
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2 by b2 v3

1.0000 | 0,0002 | 0.0050 | 0.0001
5.8576 | 0.0042 | 0,3546 | 0.0014
66,5111 | 0.9957 | 0.6404 | 0.9985

Similarly, we can observe one strong dependency between KQMW,
and T - NUQM variable is also interrelated with these two but in
& bit weaker way. All estimates of parameters are effected by
near-amulticollinearity.
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KILKA UWAG TEMAT MOZLIWOSCI STOSOWANIA
METODY UDZ W W ZDEKOMPONOWANEJ WARIANCJI

W artykule rozwazono metodg diagnozy zwiqzkéw migdzy zmienny-
ml objaéniajgeymi liniowego modelu regresji. Podstawg tej metody
est analiza numeryczna macierzy obserwacji na tych zmiennych.
etoda jest skonstruowana przy gzastosowaniu regresji wedlug ware
todci osobliwych. Obliczane sg proporcje udzialu kazdego skiadni-
ka tej wariancji w calej sumie. Metoda ta,nazywana metodq udzia-
¥éw w zdekomponowanej wariancji,wprowadzona przez Belaley
Kuh welsech(1980) pozwala obok mozliwosci wykrycia 1losei
zwiqzkéw takie na specyfikacje zmiennych zwigzanych relacjami.
Dzigki temu mozliwa jest diagnoza, ktére wspStczynniki w modelu
moga byé oszacowane wzglgdnie precyzyjnie.
Autorzy przedstawili wyniki zastosowania tej metody na przy=
k¥adach gzbudowanych na bazie banku danych modelu W~3 gospodarki
harodowej Polski oraz wiasng opinig na temat mozliwosci wykorzye

stania tej metody.



