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We consider a class of partial differential equations with the fractional Laplacian and the homogeneous Dirichlet boundary data.
Some sufficient condition under which the solutions of the equations considered depend continuously on parameters is stated.
The application of the results to some optimal control problem is presented. The methods applied in the paper make use of the
variational structure of the problem.

1. Introduction

Consider the following fractional partial differential equation
with some variable distributed parameters of the form

(−Δ)
𝛼/2

𝑢 (𝑥) + 𝜑 (𝑥, 𝑢 (𝑥) , 𝜔 (𝑥)) = 0 for 𝑥 ∈ Ω ⊂ R
𝑛

,

(1)

𝑢 (𝑥) = 0 for 𝑥 ∈ R
𝑛

\ Ω, (2)

where 𝑛 ≥ 2, Ω is a bounded domain with a Lipschitzian
boundary 𝜕Ω, and 𝑢 ∈ 𝐻

𝛼/2

0
(Ω,R) with 𝛼 ∈ (0, 2). We shall

assume that the distributed parameter 𝜔 belongs to the space
𝐿
𝑝

(Ω,R𝑚) for some suitably chosen 𝑝 > 1 and𝑚 ≥ 1.
The equation under consideration is the generalization

of the nonlinear Poisson equation involving the Brown-
ian diffusion expressed by the local Laplace operator fully
analyzed in [1–3]. We extend our considerations to cover
also the case of the nonlocal, fractional Laplace operator
being the infinitesimal generator of Lévy processes; see, for
instance, [4–7], allowing, contrary to the continuous Brow-
nian motion, for jumps. We prove the analogous stability
results as for the Brownian motion with the Laplace operator
involved obtained in [1–3].

The problems with the fractional Laplacian attracted in
recent years a lot of attention as they naturally arise in various
areas of applications to mention only [5–11] and references
therein. They appear in probabilistic framework as well as

in mathematical finance as infinitesimal generators of stable
Lévy processes [4–7]. Moreover one can find the problems
involving fractional Laplacian inmechanics and in elastostat-
ics, for example, in Signorini obstacle problem originating
from linear elasticity [12–14] as well as in fluid mechan-
ics and in hydrodynamics—appearing in quasi-geostrophic
fractional Navier-Stokes equation [15] and describing some
porous media flows in the hydrodynamic model like in [11].
The author considered also global solvability of Hammerstein
equations derived from BVPs involving fractional Laplacian
in recent paper [16].

In the theory of boundary value problems (BVPs) and
its applications one considers, first of all, the problem of
the existence of a solution, next the question of its stability,
uniqueness, and smoothness, and finally the issue of asymp-
totic analysis.One can say that a given problem iswell posed if
the problem possesses at least one solution or, more generally,
one obtains the set of solutions, which continuously changes
along with the change of variable parameters of the system
whichwe call stability.Otherwisewe refer to the problemas to
ill-posed one. The requirement of stability is necessary if the
mathematical formulation is to describe observable natural
phenomena, which by its very nature cannot possibly be
conceived as rigidly fixed: even themere process ofmeasuring
them involves small errors as was noted by Courant and
Hilbert in [17]. The theory of ill-posed problems pays most
attention to the requirement of the stability of the boundary
value problems.
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In this paper we formulate some sufficient condition
under which the boundary value problem considered here
possesses at least one solution which continuously depends
on distributed parameters. The problem of controllability of
the related evolution equations driven by the anomalous dif-
fusion governed by the fractional Laplacian was considered,
for example, in [18].

The paper is organized as follows. In Section 2 we
formulate the problem and list the assumptions appearing
throughout the paper. In Section 3, using some variational
methods we prove that boundary value problem (1)-(2) is
stable with respect to the norm topology in the space of
distributed parameters 𝐿𝑝(Ω,R𝑚) and the norm topology in
the fractional Sobolev space of solutions𝐻𝛼/2(Ω,R). We can
formulate the main result of Section 3 as follows: if 𝜔

𝑘
→

𝜔
0
in 𝐿𝑝(Ω,R𝑚), then 𝑢

𝑘
→ 𝑢

0
in 𝐻𝛼/2(Ω,R) where 𝑢

𝑘

is the solution of the boundary value problem (1)-(2) with
fixed 𝜔 = 𝜔

𝑘
, 𝑘 ∈ N

0
under suitable conditions imposed

on 𝜑. In the case when (1) is linear with respect to 𝜔, we
can relax the topology in the space 𝐿𝑝(Ω,R𝑚). In short, in
Section 4, we prove that 𝑢

𝑘
→ 𝑢
0
in 𝐻𝛼/2(Ω,R) provided

that 𝜔
𝑘
⇀ 𝜔
0
weakly in 𝐿𝑝(Ω,R𝑚). In the next section, we

present a theorem on the existence of an optimal solution to
some control problem with the integral cost functional. The
proof of this theorem relies in essential way on the continuous
dependence results. In the final part of the paper we give a
short survey of the results related to the stability of the initial
and boundary value problems for the second-order partial
differential systems with parameters.

2. Formulation of the Problem,
Introduction of the Fractional Laplacian,
and Basic Assumptions

For the definition of the fractional Laplacian one can see [19–
25]. In particular, we denote by (𝑢

𝑗
, 𝜌
𝑗
) for 𝑗 ∈ N the system of

the eigenfunctions and eigenvalues for the Laplace operator
−Δ on Ω with the homogeneous Dirichlet condition on 𝜕Ω.
Moreover, by 𝐻𝛼/2

0
(Ω,R), let us denote the Sobolev space of

functions 𝑢 = 𝑢(𝑥) defined on a bounded, smooth domain
Ω ⊂ R𝑛, 𝑛 ≥ 2, such that 𝑢 = ∑∞

𝑗=1
𝑎
𝑗
𝑢
𝑗
and∑∞

𝑗=1
𝑎2
𝑗
𝜌
𝛼/2

𝑗
< ∞,

with the norm in 𝐻𝛼/2
0

(Ω,R) with 𝛼 ∈ (0, 2) defined by the
equivalent formulas

‖𝑢‖
2

𝐻
𝛼/2

0

=

∞

∑
𝑗=1

𝑎
2

𝑗
𝜌
𝛼/2

𝑗
=

(−Δ)
𝛼/4

𝑢


2

𝐿
2
=

(−Δ)
𝛼/2

𝑢


2

𝐻
−𝛼/2

,

(3)

see, for example, [20, 23] and for the last equality, see, for
example, [19]. The fractional Laplacian acts on 𝑢 = ∑

∞

𝑗=1
𝑎
𝑗
𝑢
𝑗

as

(−Δ)
𝛼/2

𝑢 =

∞

∑
𝑗=1

𝑎
𝑗
𝜌
𝛼/2

𝑗
𝑢
𝑗
. (4)

The fractional Sobolev spaces are also referred to asGagliardo
or Slobodeckij spaces. One can give yet another definition of
𝐻
𝛼/2(Ω,R) as follows:

𝐻
𝛼/2

(Ω,R)

= {𝑢 ∈ 𝐿
2

(Ω,R) :

𝑢 (𝑥) − 𝑢 (𝑦)


𝑥 − 𝑦

(𝑛+𝛼)/2

∈ 𝐿
2

(Ω × Ω,R)}

(5)

with the norm

‖𝑢‖
2

𝐻
𝛼/2 = ∫

Ω

|𝑢 (𝑥)|
2

𝑑𝑥 +∬
Ω×Ω

𝑢 (𝑥) − 𝑢 (𝑦)

2

𝑥 − 𝑦

𝑛+𝛼

𝑑𝑥 𝑑𝑦.

(6)

For the definition of the fractional Laplacian operator involv-
ing singular integrals consistent with ours when 𝑢 is extended
by 0 outsideΩ, we refer the readers to [23], where one can find
the following lemma.

Lemma 1. Let 𝛼 ∈ (0, 2) and let (−Δ)𝛼/2 be the fractional
Laplacian operator of the form

(−Δ)
𝛼/2

𝑢 (𝑥) = 𝐶 (𝑛, 𝛼) lim
𝜀→0
+

∫
R𝑛\𝐵(𝑥,𝜀)

𝑢 (𝑥) − 𝑢 (𝑦)
𝑥 − 𝑦


𝑛+𝛼

𝑑𝑦,

(7)

where𝐶(𝑛, 𝛼) = 𝜋−(𝛼+𝑛/2)(Γ((𝑛+𝛼)/2)/Γ(−𝛼/2)).Then for any
𝑢 from the Schwartz space of rapidly decaying 𝐶∞ functions in
R𝑛 we have

(−Δ)
𝛼/2

𝑢 (𝑥) = −
1

2
∫
R𝑛

𝑢 (𝑥 + 𝑦) + 𝑢 (𝑥 − 𝑦) − 2𝑢 (𝑥)
𝑥 − 𝑦


𝑛+𝛼

𝑑𝑦

(8)

for all 𝑥 ∈ R𝑛 (cf. [23, Lemma 3.5]).

Throughout the paper, we shall assume that Ω satisfies
any condition which guarantees a compact embedding of
𝐻
𝛼/2

0
(Ω,R) into 𝐿𝑠(Ω,R)with 𝑠 ∈ (1, 2∗

𝛼
)where 2∗

𝛼
= 2𝑛/(𝑛−

𝛼) if 𝑛 ≥ 2, for example, 𝜕Ω may be Lipschitzian; that is,
𝜕Ω ∈ 𝐶

0,1 (cf. [26] for the definition of 𝐶0,1). For 𝜕Ω ∈ 𝐶
0,1

it is possible to extend 𝑢 by 0 outside Ω and stay in the same
space; see [23, Theorem 5.4].

Further, in this paper we shall use the primitive 𝜙 of the
mapping 𝜑 : Ω × R × R𝑚 → R, implying 𝜑 to be defined
as the derivative with respect to 𝑢 variable of a function 𝜙 :

Ω ×R ×R𝑚 → R; that is

𝜑 (𝑥, 𝑢, 𝜔) = 𝜙
𝑢
(𝑥, 𝑢, 𝜔) , (9)

where 𝑥 ∈ Ω a.e., 𝑢 ∈ R, and 𝜔 ∈ R𝑚.
In this case boundary value problem (1)-(2) may be

written in the form suitable for variational analysis

(−Δ)
𝛼/2

𝑢 (𝑥) + 𝜙
𝑢
(𝑥, 𝑢 (𝑥) , 𝜔 (𝑥)) = 0 for 𝑥 ∈ Ω ⊂ R

𝑛

(10)

𝑢 (𝑥) = 0 for 𝑥 ∈ R
𝑛

\ Ω, (11)
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where 𝜔 ∈ 𝐿𝑝(Ω,R𝑚), 𝑝 > 1 and 𝑚 ≥ 1. It is easily seen
that (10)-(11) represent the Euler-Lagrange equation for the
following functional of action:

𝐹
𝜔
(𝑢) = ∫

Ω

[
1

2


(−Δ)
𝛼/4

𝑢 (𝑥)


2

+ 𝜙 (𝑥, 𝑢 (𝑥) , 𝜔 (𝑥))] 𝑑𝑥,

(12)

where 𝑢 ∈ 𝐻
𝛼/2

0
(Ω,R) and 𝜔 ∈ 𝐿𝑝(Ω,R𝑚). It should

be underlined that the solutions of Euler-Lagrange equation
(10)-(11) are meant in the weak sense; that is, for any V ∈

𝐻
𝛼/2

0
(Ω,R) the following equality holds:

∫
Ω

(−Δ)
𝛼/4

𝑢 (𝑥) (−Δ)
𝛼/4V (𝑥) 𝑑𝑥

+ ∫
Ω

𝜑 (𝑥, 𝑢 (𝑥) , 𝜔 (𝑥)) V (𝑥) 𝑑𝑥 = 0.
(13)

To obtain the existence of the weak solutions of the
boundary value problemwith fractional Laplacian (10)-(11) in
the fractional Sobolev space 𝐻𝛼/2

0
(Ω,R) and the continuous

dependence of solutions on distributed parameters we shall
impose on 𝜙 the following conditions.

(A1) regularity: the functions 𝜙 and 𝜙
𝑢
are measurable

with respect to 𝑥 for any (𝑢, 𝜔) ∈ R × R𝑚 and continuous
with respect to (𝑢, 𝜔) ∈ R ×R𝑚 for a.e. 𝑥 ∈ Ω.

(A2) growth: for 𝑝 ∈ (1,∞), there exists a constant 𝑐 > 0

such that
𝜙 (𝑥, 𝑢, 𝜔)

 ≤ 𝑐 (1 + |𝑢|
𝑠

+ |𝜔|
𝑝

) ,

𝜙𝑢 (𝑥, 𝑢, 𝜔)
 ≤ 𝑐 (1 + |𝑢|

𝑠−1

+ |𝜔|
𝑝−𝑝/𝑠

) ,
(14)

for a.e. 𝑥 ∈ Ω, 𝜔 ∈ R𝑚 and 𝑢 ∈ R, where 𝑠 ∈ (1, 2∗
𝛼
) where

2∗
𝛼
= 2𝑛/(𝑛 − 𝛼); for 𝑝 = ∞ and any bounded set 𝑊 ⊂ R𝑚

there exists a constant 𝑐 > 0 such that
𝜙 (𝑥, 𝑢, 𝜔)

 ≤ 𝑐 (1 + |𝑢|
𝑠

) ,

𝜙𝑢 (𝑥, 𝑢, 𝜔)
 ≤ 𝑐 (1 + |𝑢|

𝑠−1

) ,
(15)

for a.e. 𝑥 ∈ Ω, 𝜔 ∈ 𝑊, 𝑢 ∈ R, and some 𝑠 ∈ (1, 2∗
𝛼
), where

2∗
𝛼
= 2𝑛/(𝑛 − 𝛼).
(A3) lower bound: there exist 𝑏 ∈ R and functions 𝛾 ∈

𝐿2(Ω,R), 𝛽 ∈ 𝐿1(Ω,R), such that

𝜙 (𝑥, 𝑢, 𝜔) ≥ −𝑏|𝑢|
2

− 𝛾 (𝑥) 𝑢 − 𝛽 (𝑥) , (16)

for a.e. 𝑥 ∈ Ω, 𝜔 ∈ R𝑚, and 𝑢 ∈ R, where 𝜌𝛼/2
1

> 2𝑏 and 𝜌
1
is

the principal eigenvalue of the Laplace operator −Δ defined
on the space𝐻1

0
(Ω,R).

(A4) convexity: the function 𝜙 is convex in 𝑢.

Remark 2. The principal eigenvalue 𝜌
1
of Laplacian appears

in the inequality

𝜌
𝛼/2

1
≤ inf

{

{

{

∫
Ω


(−Δ)
𝛼/4

𝑢 (𝑥)


2

𝑑𝑥

∫
Ω

|𝑢 (𝑥)|
2

𝑑𝑥
; 𝑢 ∈ 𝐻

𝛼/2

0
(Ω,R) , 𝑢 ̸= 0

}

}

}

.

(17)

Indeed, (−Δ)𝛼/4𝑢
1

= 𝜌
𝛼/4

1
𝑢
1
, so infimum on the right

hand side of the above inequality is greater or equal to
𝜌
𝛼/2

1
. Moreover, the infimum is attained since ‖𝑢‖

2

𝐻
𝛼/2

0

=

∫
Ω

|(−Δ)
𝛼/4

𝑢(𝑥)|
2

𝑑𝑥 is weakly lower semicontinuous, convex,
and coercive as the norm in the reflexive space; for details, see
[8, 27].

To derive the fractional Poincaré inequality of the form

𝜌
𝛼/2

1
∫
Ω

|𝑢 (𝑥)|
2

𝑑𝑥 ≤ ∫
Ω


(−Δ)
𝛼/4

𝑢 (𝑥)


2

𝑑𝑥 (18)

we apply the following theorem with 𝐹(𝑡) = 𝑡𝛼/2.

Theorem 3. Let 𝐹 be a continuous, increasing, and polynomi-
ally bounded real-valued functional on [0,∞), in particular,
𝐹(𝑡) > 0 for 𝑡 > 0. Then we have the following fractional order
Poincaré inequality:

𝐹 (√𝜌
1
) ‖𝑢‖
𝐿
2 ≤


𝐹 (√−Δ) 𝑢

𝐿2
, (19)

compare [28, Theorem 2.8].

For the fractional Poincaré inequality with general mea-
sures involving nonlocal quantities on unbounded domain
see paper by Mouhot et al. [29]. In what follows we shall also
use the following result.

Remark 4. The fractional Sobolev inequality extending the
above Poincaré inequality to 𝐿𝑠(Ω,R) with, in general, non
optimal constant 𝐶 > 0, has the form

∫
Ω


(−Δ)
𝛼/4

𝑢 (𝑥)


2

𝑑𝑥 ≥ 𝐶(∫
Ω

|𝑢 (𝑥)|
𝑠

𝑑𝑥)
2/𝑠

(20)

for any 𝑠 ∈ [1, 2∗
𝛼
], 𝑛 > 𝛼, and every 𝑢 ∈ 𝐻

𝛼/2

0
(Ω,R).

When 𝑠 = 2∗
𝛼
the best constant in the fractional Sobolev

inequality will be denoted by 𝑆(𝛼, 𝑛). This constant is explicit
and independent of the domain, its exact value is

𝑆 (𝛼, 𝑛) =
2𝜋
𝛼/2Γ ((𝑛 + 𝛼) /2) Γ ((2 − 𝛼) /2) (Γ (𝑛/2))

𝛼/𝑛

Γ (𝛼/2) Γ ((𝑛 − 𝛼) /2) (Γ (𝑛))
𝛼/2

,

(21)

where Γ is the standard Euler Gamma function defined by
Γ(𝑎) = ∫

∞

0

𝑡𝑎−1𝑒−𝑡𝑑𝑡, compare [19].
When 𝑠 = 2 we recover the fractional Poincaré inequality

without an optimal constant in general.

Remark 5. The fractional Sobolev space 𝐻𝛼/2
0

(Ω,R) is com-
pactly embedded into 𝐿𝑠(Ω,R) for 𝑠 ∈ [1, 2∗

𝛼
) and 𝜕Ω ∈ 𝐶0,1;

see [23, Corollary 7.2].
Under assumptions (A1)-(A2) the functional of action

defined in (12) is well defined and Fréchet differentiable and
the derivative of 𝐹

𝜔
acting on V ∈ 𝐻𝛼/2

0
(Ω,R) has the form

𝐷𝐹
𝜔
(𝑢) V = ∫

Ω

[(−Δ)
𝛼/4

𝑢 (𝑥) (−Δ)
𝛼/4V (𝑥)

+ 𝜙
𝑢
(𝑥, 𝑢 (𝑥) , 𝜔 (𝑥)) V (𝑥)] 𝑑𝑥.

(22)
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3. Continuous Dependence: Parameters
Converging in the Strong Topology

Define {𝜔
𝑘
}
𝑘∈N to be some sequences of parameters dis-

tributed onΩ. For 𝑘 ∈ N
0
:= {0}∪N, we denote by𝑈

𝑘
, the set

of all possible minimizers of the functional 𝐹
𝜔
𝑘

; that is

𝑈
𝑘
= {𝑢 ∈ 𝐻

𝛼/2

0
(Ω,R) ; 𝐹

𝜔
𝑘

(𝑢) = min
𝑦∈𝐻
𝛼/2

0
(Ω,R)

𝐹
𝜔
𝑘

(𝑦)} .

(23)

Since each minimizer 𝑢 ∈ 𝑈
𝑘
is a critical point of 𝐹

𝜔
𝑘

, that
is, 𝐷𝐹

𝜔
𝑘

(𝑢)V = 0 for any V ∈ 𝐻
𝛼/2

0
(Ω,R), it follows that

𝑢 is a weak solution of problem (10)-(11). Inversely, if 𝑢 is a
weak solution of (10) satisfying (11), then 𝑢 ∈ 𝑈

𝑘
provided

the functional 𝐹
𝜔
𝑘

is convex (cf. [30, 31]). It is clear that, in
general, the set 𝑈

𝑘
does not have to be a singleton and hence

boundary value problem (10)-(11) does not have to possess a
unique solution.

In the following theorem we shall use the definition of
the upper Painlevé-Kuratowski limit of the sets (cf. [32]). We
say that a set �̃� ⊂ 𝐻

𝛼/2

0
(Ω,R) is an upper limit of the sets

𝑈
𝑘
, 𝑘 ∈ N if any point �̃� ∈ �̃� is a cluster point of some

sequence {𝑢
𝑘
}
𝑘∈N in𝐻𝛼/2

0
(Ω,R) such that 𝑢

𝑘
∈ 𝑈
𝑘
for 𝑘 ∈ N.

By lim sup𝑈
𝑘
= �̃�, we shall denote the upper Painlevé-

Kuratowski limit of the sets 𝑈
𝑘
, 𝑘 ∈ N.

Now, we can formulate and prove the main result of this
section.

Theorem 6. Assume that

(1) the integrand 𝜙 satisfies conditions (A1)–(A3),
(2) the sequence of distributed parameters {𝜔

𝑘
}
𝑘∈N tends to

𝜔
0
in 𝐿𝑝(Ω,R𝑚) with 𝑝 > 1.

Then

(a) for any 𝜔
𝑘
, the set 𝑈

𝑘
is a nonempty subset of

𝐻
𝛼/2

0
(Ω,R), for 𝑘 ∈ N

0
,

(b) there exists a ball 𝐵(0, 𝜌) ⊂ 𝐻𝛼/2
0

(Ω,R) for some 𝜌 > 0
such that 𝑈

𝑘
⊂ 𝐵(0, 𝜌) for 𝑘 ∈ N

0
,

(c) any sequence {𝑢
𝑘
}
𝑘∈N such that 𝑢

𝑘
∈ 𝑈
𝑘
is relatively

compact in𝐻𝛼/2
0

(Ω,R) and 0 ̸= lim sup𝑈
𝑘
⊂ 𝑈
0
.

Additionally, if the sets𝑈
𝑘
are singletons, that is,𝑈

𝑘
= {𝑢
𝑘
},

𝑘 ∈ N
0
, then {𝑢

𝑘
}
𝑘∈N tends to 𝑢

0
in𝐻𝛼/2
0

(Ω,R).

Before going to the proof, it is worth noting that, if 𝑈
𝜔

denotes the set of all possible minimizers of the functional 𝐹
𝜔

defined by (12), then assertion (c) ofTheorem 6 states that the
set valued mapping 𝐿𝑝(Ω,R𝑚) ∋ 𝜔 → 𝑈

𝜔
⊂ 𝐻
𝛼/2

0
(Ω,R) is

upper semicontinuous with respect to the strong topology of
spaces 𝐿𝑝(Ω,R𝑚) and𝐻𝛼/2

0
(Ω,R).

Proof. Consider the following.

Step 1. In the first step we prove assertions (a) and (b) of our
theorem.

For 𝑘 ∈ N
0
, consider the functional

𝐹
𝜔
𝑘

(𝑢) = ∫
Ω

[
1

2


(−Δ)
𝛼/4

𝑢 (𝑥)


2

+ 𝜙 (𝑥, 𝑢 (𝑥) , 𝜔
𝑘
(𝑥))] 𝑑𝑥.

(24)

By assumption (2) of our theorem, ‖𝜔
𝑘
‖
𝐿
𝑝 ≤ 𝐶
0
for some𝐶

0
>

0. By (A3), we have

𝐹
𝜔
𝑘

(𝑢) ≥ ∫
Ω

[
1

2


(−Δ)
𝛼/4

𝑢 (𝑥)


2

− 𝑏|𝑢 (𝑥)|
2

− 𝛾 (𝑥) 𝑢 (𝑥) − 𝛽 (𝑥)] 𝑑𝑥

(25)

and therefore the application of the fractional Poincaré
inequality (18) gives

𝐹
𝜔
𝑘

(𝑢) ≥ (
1

2
− 𝑏𝜌
−𝛼/2

1
) ‖𝑢‖
2

𝐻
𝛼/2

0

− 𝐶
1
‖𝑢‖
𝐻
𝛼/2

0

− 𝐶
2
= 𝑝 (‖𝑢‖

𝐻
𝛼/2

0

)

(26)

with 𝜌
𝛼/2

1
− 2𝑏 > 0 from (A3), where 𝐶

1
, 𝐶
2
are some

constants independent of 𝜔
𝑘
; however, depending on ‖𝛾‖

𝐿
2

and ‖𝛽‖
𝐿
1 .The functional𝐹

𝜔
𝑘

is weakly lower semicontinuous
on 𝐻
𝛼/2

0
(Ω,R) as a sum involving the norm in 𝐻

𝛼/2

0
(Ω,R),

compare [8], and the integral term with 𝜙 satisfying the
standard regularity and growth conditions (A1) and (A2),
compare [33–36], as 𝐻𝛼/2

0
(Ω,R) ⊂ 𝐿

𝑠

(Ω,R) for suitably
chosen 𝑠 in the embedding. Since, by (26), the functionals
𝐹
𝜔
𝑘

are coercive, we infer that the sets 𝑈
𝑘
are nonempty and

weakly closed. Moreover, by condition (A2), putting 𝑢 = 0,
we get the following estimates due to the boundedness of 𝜔

𝑘

in 𝐿𝑝(Ω,R𝑚)

𝐹
𝜔
𝑘

(0) ≤ ∫
Ω

𝑐 (1 +
𝜔𝑘 (𝑥)


𝑝

) 𝑑𝑥 ≤ 𝐷
1

if 1 < 𝑝 < ∞,

(27)

𝐹
𝜔
𝑘

(0) ≤ ∫
Ω

𝑐 𝑑𝑥 ≤ 𝐷
2

if 𝑝 = ∞, (28)

where the constants 𝐷
1
and 𝐷

2
are independent of 𝜔

𝑘
.

Directly from inequalities (26), (27), and (28) we obtain that
for some 𝜌 > 0

𝑈
𝑘
⊂ 𝐵 (0, 𝜌) = {𝑢 ∈ 𝐻

𝛼/2

0
(Ω,R) : ‖𝑢‖

𝐻
𝛼/2

0

≤ 𝜌} . (29)

We have thus proved assertions (a) and (b) of our theorem.

Step 2. For 𝑘 ∈ N
0
, denote by 𝜇

𝑘
the minimal value of the

functional 𝐹
𝜔
𝑘

; that is

𝜇
𝑘
= min
𝑢∈𝐻
𝛼/2

0

𝐹
𝜔
𝑘

(𝑢) = 𝐹
𝜔
𝑘

(𝑢) , (30)

where 𝑢 ∈ 𝑈
𝑘
. We shall observe that

lim
𝑘→∞

𝜇
𝑘
= 𝜇
0 (31)

provided that 𝜔
𝑘
→ 𝜔
0
in 𝐿𝑝(Ω,R𝑚) as 𝑘 → ∞.
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We begin by proving that the sequence {𝐹
𝜔
𝑘

(𝑢)}
𝑘∈N

tends
to 𝐹
𝜔
0

(𝑢) uniformly on any ball 𝐵(0, 𝜌) ⊂ 𝐻
𝛼/2

0
(Ω,R) of

radius 𝜌 > 0. By definition (24), we have

𝐼𝑘 (𝑢)
 =


𝐹
𝜔
𝑘

(𝑢) − 𝐹
𝜔
0

(𝑢)


=

∫
Ω

[𝜙 (𝑥, 𝑢 (𝑥) , 𝜔
𝑘
(𝑥)) − 𝜙 (𝑥, 𝑢 (𝑥) , 𝜔

0
(𝑥))] 𝑑𝑥


.

(32)

Suppose that, on the contrary, the above integral does not
tend to zero uniformly on 𝐵(0, 𝜌). It means that there exists
𝜀
0

> 0 and a sequence {𝑢
𝑘
}
𝑘∈N ⊂ 𝐵(0, 𝜌) such that

|𝐼
𝑘
(𝑢
𝑘
)| > 𝜀

0
. Passing to a subsequence if necessary, we can

assume that {𝑢
𝑘
}
𝑘∈N tends to some 𝑢 weakly in 𝐻𝛼/2

0
(Ω,R).

From the fractional Sobolev compact embedding theorem,
see Remark 5, we deduce that, up to subsequence, {𝑢

𝑘
}
𝑘∈N

tends to 𝑢 in 𝐿𝑠(Ω,R). By assumption (2), we know that
{𝜔
𝑘
}
𝑘∈N tends to 𝜔

0
in 𝐿𝑝(Ω,R𝑚). Applying the Krasnoselskii

theorem (cf. [37, 38]) the continuity of the operator 𝐿𝑠 ×𝐿𝑝 ∋
(𝑢, 𝑤) → 𝜙(⋅, 𝑢(⋅), 𝑤(⋅)) ∈ 𝐿1 follows and which together with
condition (A2) implies 𝐼

𝑘
(𝑢
𝑘
) → 0 as 𝑘 → ∞. Thus we

have got a contradiction with the inequality |𝐼
𝑘
(𝑢
𝑘
)| > 𝜀

0
.

It means that 𝐼
𝑘
(𝑢) tends to zero uniformly on 𝐵(0, 𝜌) and

consequently {𝐹
𝜔
𝑘

(𝑢)}
𝑘∈N

converges to 𝐹
𝜔
0

(𝑢) uniformly on
𝐵(0, 𝜌) provided that 𝜔

𝑘
→ 𝜔
0
in 𝐿𝑝(Ω,R𝑚).

Consequently, for any 𝜀 > 0 and 𝑘 chosen to be sufficiently
large, we have

𝜇
𝑘
= min
𝑢∈𝐻
𝛼/2

0
(Ω,R)

𝐹
𝜔
𝑘

(𝑢) = min
𝑢∈𝐵(0,𝜌)

𝐹
𝜔
𝑘

(𝑢)

≤ min
𝑢∈𝐵(0,𝜌)

𝐹
𝜔
0

(𝑢) + 𝜀 = min
𝑢∈𝐻
𝛼/2

0
(Ω,R)

𝐹
𝜔
0

(𝑢) + 𝜀 = 𝜇
0
+ 𝜀.

(33)

Similarly, 𝜇
0
≤ 𝜇
𝑘
+ 𝜀. We have thus proved equality (31).

Step 3. Finally, we shall prove assertion (c). Let {𝑢
𝑘
}
𝑘∈N be a

sequence of minimizers; that is, 𝑢
𝑘
∈ 𝑈
𝑘
. Since 𝑈

𝑘
⊂ 𝐵(0, 𝜌)

for 𝑘 ∈ N
0
, the sequence {𝑢

𝑘
}
𝑘∈N is weakly relatively compact

in𝐻𝛼/2
0

(Ω,R).Wemay assume after passing to a subsequence
(still denoted by 𝑢

𝑘
) that {𝑢

𝑘
}
𝑘∈N tends to some 𝑢 ∈ 𝐵(0, 𝜌)

in the weak topology of 𝐻𝛼/2
0

(Ω,R). Let us prove now that
𝑢 ∈ 𝑈

0
; that is, 𝑢 is a minimizer of 𝐹

𝜔
0

. Indeed, suppose that
𝑢 ∉ 𝑈

0
. The set 𝑈

0
is nonempty and therefore there exists

some 𝑢
0
∈ 𝑈
0
such that 𝑢

0
̸= 𝑢. Clearly, since 𝑢

0
is aminimizer

of 𝐹
𝜔
0

, 𝐹
𝜔
0

(𝑢) − 𝐹
𝜔
0

(𝑢
0
) = 𝛽 > 0 and moreover we have

𝜇
𝑘
− 𝜇
0
= [𝐹
𝜔
𝑘

(𝑢
𝑘
) − 𝐹
𝜔
0

(𝑢
𝑘
)] + [𝐹

𝜔
0

(𝑢
𝑘
) − 𝐹
𝜔
0

(𝑢)] + 𝛽.

(34)

Uniform convergence of {𝐹
𝜔
𝑘

(𝑢)}
𝑘∈N

to 𝐹
𝜔
0

(𝑢) on 𝐵(0, 𝜌)

leads to 𝐹
𝜔
𝑘

(𝑢
𝑘
) − 𝐹
𝜔
0

(𝑢
𝑘
) → 0 as 𝑢

𝑘
∈ 𝐵(0, 𝜌) by (b).

Furthermore, the weak lower semicontinuity of 𝐹
𝜔
0

and the
weak convergence of 𝑢

𝑘
to 𝑢 in𝐻𝛼/2

0
(Ω,R) lead to

lim inf
𝑘→∞

𝐹
𝜔
0

(𝑢
𝑘
) − 𝐹
𝜔
0

(𝑢) ≥ 0. (35)

Thuswe have got a contradictionwith (31). Consequently, 𝑢 ∈
𝑈
0
.
What we need to do now is to demonstrate that any

sequence {𝑢
𝑘
}
𝑘∈N such that 𝑢

𝑘
∈ 𝑈
𝑘
converges strongly to 𝑢

in𝐻𝛼/2
0

(Ω,R). By (22), for 𝑘 ∈ N, we have

0 = (𝐷𝐹
𝜔
𝑘

(𝑢
𝑘
) − 𝐷𝐹

𝜔
0

(𝑢)) (𝑢
𝑘
− 𝑢) =

𝑢𝑘 − 𝑢

2

𝐻
𝛼/2

0

+ 𝐼
𝑘
,

(36)

where

𝐼
𝑘
= ∫
Ω

(𝜙
𝑢
(𝑥, 𝑢
𝑘
(𝑥) , 𝜔

𝑘
(𝑥)) − 𝜙

𝑢
(𝑥, 𝑢 (𝑥) , 𝜔

0
(𝑥)))

× (𝑢
𝑘
(𝑥) − 𝑢 (𝑥)) 𝑑𝑥.

(37)

The Hölder inequality and the growth condition (A2) allow
us to write the following estimates:

𝐼
𝑘
≤ (∫
Ω

𝜙𝑢 (𝑥, 𝑢𝑘 (𝑥) , 𝜔𝑘 (𝑥))

− 𝜙
𝑢
(𝑥, 𝑢 (𝑥) , 𝜔

0
(𝑥))


𝑠/(𝑠−1)

𝑑𝑥)
(𝑠−1)/𝑠

× (∫
Ω

𝑢𝑘 (𝑥) − 𝑢 (𝑥)

𝑠

𝑑𝑥)
1/𝑠

≤ 𝐶
4
(∫
Ω

(1 +
𝑢𝑘 (𝑥)


𝑠

+ |𝑢 (𝑥)|
𝑠

+
𝜔𝑘 (𝑥)


𝑝

+
𝜔0 (𝑥)


𝑝

) 𝑑𝑥)
(𝑠−1)/𝑠

×
𝑢𝑘 − 𝑢

𝐿𝑠 if 𝑝 < ∞,

𝐼
𝑘
≤ 𝐶
5
(∫
Ω

(1 +
𝑢𝑘 (𝑥)


𝑠

+ |𝑢 (𝑥)|
𝑠

) 𝑑𝑥)
(𝑠−1)/𝑠

×
𝑢𝑘 − 𝑢

𝐿𝑠 if 𝑝 = ∞,

(38)

where 𝐶
4
and 𝐶

5
are some positive constants. Since {𝑢

𝑘
}
𝑘∈N

converges to 𝑢 in 𝐿𝑠(Ω,R) and {𝜔
𝑘
}
𝑘∈N is bounded in

𝐿𝑝(Ω,R𝑚) we see that 𝐼
𝑘
→ 0 as 𝑘 → ∞ and therefore

the first integral ‖𝑢
𝑘
− 𝑢‖
2

𝐻
𝛼/2

0

tends to zero. Thus the weak
convergence of the minimizers 𝑢

𝑘
∈ 𝑈
𝑘
to 𝑢 ∈ 𝑈

0
implies

the strong convergence of minimizers in 𝐻𝛼/2
0

(Ω,R), which
completes the proof.

Let us return to boundary value problem (10)-(11) and, for
𝑘 ∈ N

0
, let us denote by 𝑆

𝑘
the set of solutions to the problem

which corresponds to the parameter 𝜔
𝑘
. It is the well-known

fact, see, for instance, [30, 31], that for the convex functional
of action the set of minimizers 𝑈

𝑘
coincides with the set of

solutions 𝑆
𝑘
. Hence for boundary value problem (10)-(11) we

have the following corollary.

Corollary 7. If

(1) the integrand 𝜙 satisfies conditions (A1)–(A4),
(2) the sequence of distributed parameters {𝜔

𝑘
}
𝑘∈N tends to

𝜔
0
in 𝐿𝑝(Ω,R𝑚) with 𝑝 > 1,



6 The Scientific World Journal

then the sequence {𝑆
𝑘
}
𝑘∈N
0

satisfies assertions (a)–(c) of
Theorem 6 with 𝑈

𝑘
= 𝑆
𝑘
, 𝑘 ∈ N

0
.

Moreover, if the functional of action is strictly convex, then
for 𝑘 ∈ N

0
, problem (10)-(11) possesses a unique solution 𝑢

𝑘
,

and lim
𝑘→∞

𝑢
𝑘
= 𝑢
0
in𝐻𝛼/2
0

(Ω,R).

4. Continuous Dependence: The Parameters
Converging in the Weak Topology

To achieve stronger results which are useful in optimization
theory, it is necessary to narrow down the class of equa-
tions under considerations. Namely, in this section, we shall
assume that the integrand 𝜙 is linear with respect to the
distributed parameter 𝜔; that is

𝜙 (𝑥, 𝑢, 𝜔) = 𝜙
1

(𝑥, 𝑢) + ⟨𝜙
2

(𝑥, 𝑢) , 𝜔⟩ , (39)

where 𝜙1 : Ω×R → R, 𝜙2 : Ω×R → R𝑚, 𝜔 ∈ R𝑚 and ⟨⋅, ⋅⟩
stands for a scalar product in R𝑚. In this case, the boundary
value problem (10)-(11) takes the form

(−Δ)
𝛼/2

𝑢 (𝑥) + 𝜙
1

𝑢
(𝑥, 𝑢 (𝑥)) + ⟨𝜙

2

𝑢
(𝑥, 𝑢 (𝑥)) , 𝜔 (𝑥)⟩ = 0

for 𝑥 ∈ Ω ⊂ R
𝑛

,

(40)

𝑢 (𝑥) = 0 for 𝑥 ∈ R
𝑛

\ Ω (41)

and the functional of action has the form

𝐹
𝜔
(𝑢) = ∫

Ω

[
1

2


(−Δ)
𝛼/4

𝑢 (𝑥)


2

+ 𝜙
1

(𝑥, 𝑢 (𝑥))

+ ⟨𝜙
2

(𝑥, 𝑢 (𝑥)) , 𝜔 (𝑥)⟩ ] 𝑑𝑥,

(42)

where 𝑢 ∈ 𝐻𝛼/2
0

(Ω,R) and 𝜔 ∈ 𝐿𝑝(Ω,R𝑚) with 1 < 𝑝 < ∞.
We impose the following conditions on 𝜙1, 𝜙2:

(A1) regularity: the functions𝜙1,𝜙1
𝑢
,𝜙2, and𝜙2

𝑢
aremeasur-

able with respect to 𝑥 for any 𝑢 ∈ R and continuous
with respect to 𝑢 for a.e. 𝑥 ∈ Ω;

(A2) growth: there exists a constant 𝑐 > 0 such that

𝜙
1

𝑢
(𝑥, 𝑢)


≤ 𝑐 (1 + |𝑢|

𝑠−1

) ,


𝜙
2

𝑢
(𝑥, 𝑢)


≤ 𝑐 (1 + |𝑢|

𝑠−1−𝑠/𝑝

)

(43)

for a.e. 𝑥 ∈ Ω, 𝑢 ∈ R and 𝑠 ∈ (1 + 1/(𝑝 − 1), 2∗
𝛼
) where

2∗
𝛼
= 2𝑛/(𝑛 − 𝛼) > 2 and 1 < 𝑝 < ∞.

Suppose that 𝜙 meets conditions (A3) and (A4). Obvi-
ously, assumptions (A1) and (A2) imply the function 𝜙 to
satisfy (A1) and (A2). For this weaker form of the problem,
the claim of the theorem on the existence and the continuous
dependence can be strengthened. To draw the same conclu-
sion this time, it suffices to assume the weak convergence of
parameters.

Let {𝜔
𝑘
}
𝑘∈N be some sequence of the distributed param-

eters. Denote by 𝑈
𝑘
a set of all minimizers of the functional

of action (42) with 𝜔 = 𝜔
𝑘
given in (23). We shall prove the

following.

Theorem 8. Suppose that

(1) the integrand 𝜙 is of the form (39) and satisfies
conditions (𝐴1), (𝐴2), and (𝐴3),

(2) the sequence of distributed parameters {𝜔
𝑘
}
𝑘∈N tends to

𝜔
0
in the weak topology of 𝐿𝑝(Ω,R𝑚).

Then the sequence {𝑈
𝑘
}
𝑘∈N
0

satisfies assertions (a)–(c) of
Theorem 6.

Proof. As in the proof of Theorem 6, in the similar manner,
we obtain assertions (a) and (b) of our theorem taken from
Theorem 6. Let {𝑢

𝑘
}
𝑘∈N ⊂ 𝐻

𝛼/2

0
(Ω,R) be an arbitrary

sequence such that 𝑢
𝑘
∈ 𝑈
𝑘
⊂ 𝐵(0, 𝜌), for 𝑘 ∈ N, where the

sets 𝑈
𝑘
are defined by formula (23). The sequence {𝑢

𝑘
}
𝑘∈N is

bounded and therefore weakly relatively compact. Passing, if
necessary, to a subsequence, we can assume that 𝑢

𝑘
⇀ 𝑢
0

weakly in 𝐻𝛼/2
0

(Ω,R). We shall show that 𝑢
0
∈ 𝑈
0
, but now

we present different approach than in the proof ofTheorem 6.
By conditions (A1) and (A2) and formula (22), for 𝑘 ∈ N

and ℎ ∈ 𝐻𝛼/2
0

(Ω,R), we have

0 = 𝐷𝐹
𝜔
𝑘

(𝑢
𝑘
) ℎ

= ∫
Ω

[(−Δ)
𝛼/4

𝑢
𝑘
(𝑥) (−Δ)

𝛼/4

ℎ (𝑥)

+ 𝜙
1

𝑢
(𝑥, 𝑢
𝑘
(𝑥)) ℎ (𝑥)

+ ⟨𝜙
2

𝑢
(𝑥, 𝑢
𝑘
(𝑥)) ℎ (𝑥) , 𝜔

𝑘
(𝑥)⟩] 𝑑𝑥.

(44)

It is easy to observe that since 𝑢
𝑘
⇀ 𝑢
0
weakly in𝐻𝛼/2

0
(Ω,R)

for any ℎ ∈ 𝐻𝛼/2
0

(Ω,R)

lim
𝑘→∞

∫
Ω

(−Δ)
𝛼/4

𝑢
𝑘
(𝑥) (−Δ)

𝛼/4

ℎ (𝑥) 𝑑𝑥

= ∫
Ω

(−Δ)
𝛼/4

𝑢
0
(𝑥) (−Δ)

𝛼/4

ℎ (𝑥) 𝑑𝑥.

(45)

By the fractional Sobolev compact embedding theorem, after
passing to a subsequence (still denoted by 𝑢

𝑘
) if necessary, we

can assume that {𝑢
𝑘
}
𝑘∈N tends to 𝑢0 in 𝐿

𝑠

(Ω,R) for 𝑠 ∈ (1, 2∗
𝛼
).

By (A2), the superposition operator 𝜙1
𝑢
(⋅, 𝑢(⋅))ℎ(⋅) acting on

𝑢 ∈ 𝐿𝑠(Ω,R) to 𝐿1(Ω,R) is continuous; that is, for any ℎ ∈

𝐻
𝛼/2

0
(Ω,R)

lim
𝑘→∞

∫
Ω

𝜙
1

𝑢
(𝑥, 𝑢
𝑘
(𝑥)) ℎ (𝑥) 𝑑𝑥 = ∫

Ω

𝜙
1

𝑢
(𝑥, 𝑢
0
(𝑥)) ℎ (𝑥) 𝑑𝑥.

(46)

Let us consider the integral

𝐼
𝑘
= ∫
Ω

⟨𝜙
2

𝑢
(𝑥, 𝑢
𝑘
(𝑥)) ℎ (𝑥) , 𝜔

𝑘
(𝑥)⟩ 𝑑𝑥 (47)

which can be represented as

𝐼
𝑘
= 𝐼
1

𝑘
+ 𝐼
2

𝑘
, (48)
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where

𝐼
1

𝑘
= ∫
Ω

⟨𝜙
2

𝑢
(𝑥, 𝑢
0
(𝑥)) ℎ (𝑥) , 𝜔

𝑘
(𝑥)⟩ 𝑑𝑥,

𝐼
2

𝑘
= ∫
Ω

⟨[𝜙
2

𝑢
(𝑥, 𝑢
𝑘
(𝑥)) ℎ (𝑥)

− 𝜙
2

𝑢
(𝑥, 𝑢
0
(𝑥)) ℎ (𝑥)] , 𝜔

𝑘
(𝑥)⟩ 𝑑𝑥.

(49)

Since ‖𝜔
𝑘
‖
𝐿
𝑝‖ℎ‖
𝐿
𝑠 ≤ 𝐶, we see that


𝐼
2

𝑘


≤ 𝐶(∫

Ω


𝜙
2

𝑢
(𝑥, 𝑢
𝑘
(𝑥)) − 𝜙

2

𝑢
(𝑥, 𝑢
0
(𝑥))



𝛾

𝑑𝑥)
1/𝛾

, (50)

where 𝛾 = 𝑝𝑠/((𝑠 − 1)𝑝 − 𝑠) and moreover due to growth
estimate (A2) we get the bound 𝐶(1 + ‖𝑢

𝑘
‖
𝐿
𝑠 + ‖𝑢
0
‖
𝐿
𝑠), since

𝑝𝑠

(𝑠 − 1) 𝑝 − 𝑠

(𝑠 − 1) 𝑝 − 𝑠

𝑝
= 𝑠. (51)

Hence, up to subsequence, we have that 𝐼2
𝑘
→ 0 as 𝑘 → ∞.

Similarly, by (2) and (A2) we get

lim
𝑘→∞

𝐼
1

𝑘
= ∫
Ω

⟨𝜙
2

𝑢
(𝑥, 𝑢
0
(𝑥)) ℎ (𝑥) , 𝜔

0
(𝑥)⟩ 𝑑𝑥. (52)

Thus

lim
𝑘→∞

𝐼
𝑘
= ∫
Ω

⟨𝜙
2

𝑢
(𝑥, 𝑢
0
(𝑥)) ℎ (𝑥) , 𝜔

0
(𝑥)⟩ 𝑑𝑥 (53)

for all ℎ ∈ 𝐻
𝛼/2

0
(Ω,R). Taking into account equalities (45),

(46), and (53), we infer that𝐷𝐹
𝜔
0

(𝑢
0
) = 0. It means that 𝑢

0
∈

𝑈
0
. To complete the proof, we shall verify that the sequence

{𝑢
𝑘
}
𝑘∈N converges to 𝑢

0
in𝐻𝛼/2
0

(Ω,R). By (22), we have

0 = (𝐷𝐹
𝜔
𝑘

(𝑢
𝑘
) − 𝐷𝐹

𝜔
0

(𝑢
0
)) (𝑢
𝑘
− 𝑢
0
)

= ∫
Ω


(−Δ)
𝛼/4

𝑢
𝑘
(𝑥) − (−Δ)

𝛼/4

𝑢
0
(𝑥)



2

𝑑𝑥

+∫
Ω

(𝜙
1

𝑢
(𝑥, 𝑢
𝑘
(𝑥))−𝜙

1

𝑢
(𝑥, 𝑢
0
(𝑥))) (𝑢

𝑘
(𝑥)−𝑢

0
(𝑥)) 𝑑𝑥

+ ∫
Ω

⟨𝜙
2

𝑢
(𝑥, 𝑢
𝑘
(𝑥)) (𝑢

𝑘
(𝑥) − 𝑢

0
(𝑥)) , 𝜔

𝑘
(𝑥)⟩ 𝑑𝑥

− ∫
Ω

⟨𝜙
2

𝑢
(𝑥, 𝑢
0
(𝑥)) (𝑢

𝑘
(𝑥) − 𝑢

0
(𝑥)) , 𝜔

0
(𝑥)⟩ 𝑑𝑥

=
𝑢𝑘 − 𝑢0


2

𝐻
𝛼/2

0

+ 𝐼
1

𝑘
+ 𝐼
2

𝑘
+ 𝐼
3

𝑘
.

(54)

Since for

𝐼
1

𝑘
= ∫
Ω

(𝜙
1

𝑢
(𝑥, 𝑢
𝑘
(𝑥)) − 𝜙

1

𝑢
(𝑥, 𝑢
0
(𝑥))) (𝑢

𝑘
(𝑥) − 𝑢

0
(𝑥)) 𝑑𝑥,

(55)

by the Hölder inequality and the growth condition (A2), we
get

𝐼
1

𝑘
≤ (∫
Ω


𝜙
1

𝑢
(𝑥, 𝑢
𝑘
(𝑥)) − 𝜙

1

𝑢
(𝑥, 𝑢
0
(𝑥))



𝑠/(𝑠−1)

𝑑𝑥)
(𝑠−1)/𝑠

×(∫
Ω

𝑢𝑘 (𝑥) − 𝑢0 (𝑥)

𝑠

𝑑𝑥)
1/𝑠

≤ 𝐶
4
(∫
Ω

(1 +
𝑢𝑘 (𝑥)


𝑠

+
𝑢0 (𝑥)


𝑠

) 𝑑𝑥)
(𝑠−1)/𝑠

×
𝑢𝑘 − 𝑢0

𝐿𝑠 if 𝑝 < ∞,

(56)

and in a similarmanner using theHölder inequality, 𝐼2
𝑘
and 𝐼3
𝑘

can be estimated by the terms involving ‖𝑢
𝑘
− 𝑢
0
‖
𝐿
𝑠 , ‖𝑤
𝑘
‖
𝐿
𝑝 ,

for 𝑘 ∈ N
0
, and finally ‖𝜙2

𝑢
‖
𝐿
𝑝𝑠/(𝑝(𝑠−1)−𝑠) . The latter term due

to the growth condition imposed on 𝜙2
𝑢
can be estimated as

before from the above by ‖𝑢
𝑘
‖
𝐿
𝑠 for 𝑘 ∈ N

0
. Since {𝑢

𝑘
}
𝑘∈N

converges to 𝑢
0
in 𝐿𝑠(Ω,R) and {𝜔

𝑘
}
𝑘∈N converges to 𝜔

0
in

𝐿𝑝(Ω,R𝑚) we have 𝐼
𝑘
= (𝐼1
𝑘
+ 𝐼2
𝑘
+ 𝐼3
𝑘
) → 0 as 𝑘 → ∞.

Consequently, ‖𝑢
𝑘
− 𝑢
0
‖
𝐻
𝛼/2

0

→ 0 as 𝑘 → 0. Thus, the weak
convergence of minimizers 𝑢

𝑘
∈ 𝑈
𝑘
to 𝑢
0
∈ 𝑈
0
implies the

strong convergence of minimizers in 𝐻𝛼/2
0

(Ω,R). Therefore,
the proof of our theorem is complete.

5. Existence of Optimal Solutions

We now formulate the optimal control problem to which
this section is dedicated. It transpires that the continuous
dependence results from Section 4 enable us to prove a
theorem on the existence of optimal processes to some opti-
mal control problem. Specifically, we shall consider control
problem governed by boundary value problem (40)-(41) with
the integral cost functional

𝐽 (𝑢, 𝜔) = ∫
Ω

𝜃 (𝑥, 𝑢 (𝑥) , (−Δ)
𝛼/4

𝑢 (𝑥) , 𝜔 (𝑥)) 𝑑𝑥, (57)

where 𝜃 : Ω × R × R × R𝑚 → R is a given function. Here
𝑢 ∈ 𝐻

𝛼/2

0
(Ω,R) is the trajectory and 𝜔 ∈ W is the distributed

control where

W = {𝜔 ∈ 𝐿
𝑝

(Ω,R
𝑚

) : 𝜔 (𝑥) ∈ 𝑊 for a.e. 𝑥 ∈ Ω} (58)

with 𝑝 > 1 and𝑊 being a compact and convex subset ofR𝑚.
LetD be the set of all admissible pairs; that is

D = {(𝑢, 𝜔) ∈ 𝐻
𝛼/2

0
(Ω,R)

×W : 𝑢 satisfies (40) for 𝜔 ∈ W} .

(59)

It should be noted that under assumptions of Theorem 8 the
set of all admissible pairsD is nonempty. In this section, our
aim is to find a pair (𝑢

𝜔
∗ , 𝜔∗) ∈ 𝐻

𝛼/2

0
(Ω,R) ×W such that

𝐽 (𝑢
𝜔
∗ , 𝜔
∗

) = min
(𝑢,𝜔)∈D

𝐽 (𝑢, 𝜔) . (60)

On the integrand 𝜃 we impose the following conditions.
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(A5) The function 𝜃 = 𝜃(𝑥, 𝑢, 𝑝, 𝜔) is measurable with
respect to 𝑥 for all 𝑢 ∈ R, 𝑝 ∈ R, 𝜔 ∈ 𝑊, continuous
with respect to (𝑢, 𝑝, 𝜔) for a.e. 𝑥 ∈ Ω, and convex
with respect to 𝜔 for all 𝑢 ∈ R, 𝑝 ∈ R, and a.e. 𝑥 ∈ Ω.
Moreover there exists a constant 𝑐 > 0 such that

𝜃 (𝑥, 𝑢, 𝑝, 𝜔)
 ≤ 𝑐 (1 + |𝑢|

𝑠

+
𝑝

2

) (61)

for a.e. 𝑥 ∈ Ω, all 𝑢 ∈ R, 𝑝 ∈ R, 𝜔 ∈ 𝑊, and for some
𝑠 ∈ (1, 2∗

𝛼
) where 2∗

𝛼
= 2𝑛/(𝑛 − 𝛼).

(A6) There exists a function 𝜂 ∈ 𝐿1(Ω,R) and a constant
𝑀 > 0 such that

𝜃 (𝑥, 𝑢, 𝑝, 𝜔) ≥ 𝜂 (𝑥) − 𝑀(|𝑢| +
𝑝
 + |𝜔|) (62)

for all 𝑢 ∈ R, 𝑝 ∈ R, 𝜔 ∈ 𝑊, and a.e. 𝑥 ∈ Ω.

Now we prove a theorem on the existence of optimal
processes to our optimal control problem (60).

Theorem 9. If the functions 𝜙 of the form (39) satisfies (𝐴1),
(𝐴2), (A3), (A4), and the integrand 𝜃meets assumptions (A5),
(A6), then the optimal control problem (60) possesses at least
one optimal process (𝑢

𝜔
∗ , 𝜔∗).

Proof. From (A5), (A6), and classical theorems on semicon-
tinuity of integral functional (cf. [33–36]), we deduce that 𝐽 is
lower semicontinuous with respect to the strong topology in
the space 𝐻𝛼/2

0
(Ω,R) and the weak topology of 𝐿𝑝(Ω,R𝑚),

since convergence of any sequence {𝑢
𝑘
}
𝑘∈N in 𝐻

𝛼/2

0
(Ω,R)

implies the strong convergence of {𝑢
𝑘
}
𝑘∈N in 𝐿𝑠(Ω,R) with

𝑠 ∈ (1, 2∗
𝛼
) and the strong convergence of {(−Δ)𝛼/4𝑢

𝑘
}
𝑘∈N in

𝐿2(Ω,R).
Let {(𝑢

𝑘
, 𝜔
𝑘
)}
𝑘∈N ⊂ D be a minimizing sequence for

optimal control problem (60); that is

lim
𝑘→∞

𝐽 (𝑢
𝑘
, 𝜔
𝑘
) = inf
(𝑢,𝜔)∈D

𝐽 (𝑢, 𝜔) = 𝜗, (63)

Since the set𝑊 is compact and convex, the sequence {𝜔
𝑘
}
𝑘∈N

is compact in the weak topology of 𝐿𝑝(Ω,R𝑚). Passing to
subsequence, if necessary, we can assume that 𝜔

𝑘
tends to

some 𝜔
0
∈ W weakly in 𝐿𝑝(Ω,R𝑚). By assumption (A4)

the set of the weak solutions of problem (40)-(41) coincides
with the set of minimizers of the functional 𝐹

𝜔
on the space

𝐻
𝛼/2

0
(Ω,R). By Theorem 8, the sequence {𝑢

𝑘
}
𝑘∈N, or at least

some of its subsequence, tends to 𝑢
0
in 𝐻𝛼/2
0

(Ω,R) and the
pair (𝑢

0
, 𝜔
0
) is an admissible pair for control problem (40)-

(41).
Due to the lower semicontinuity of 𝐽, we have

𝐽 (𝑢
0
, 𝜔
0
) ≤ lim inf
𝑘→∞

𝐽 (𝑢
𝑘
, 𝜔
𝑘
) (64)

provided 𝑢
𝑘
tends to 𝑢

0
in 𝐻𝛼/2
0

(Ω,R) and 𝜔
𝑘
⇀ 𝜔
0
weakly

in 𝐿𝑝(Ω,R𝑚). Furthermore, by (63) and (64), we have

𝜗 ≤ 𝐽 (𝑢
0
, 𝜔
0
) ≤ lim inf
𝑘→∞

𝐽 (𝑢
𝑘
, 𝜔
𝑘
) = inf
(𝑢,𝜔)∈D

𝐽 (𝑢, 𝜔) = 𝜗.

(65)

Thus, 𝐽(𝑢
0
, 𝜔
0
) = 𝜗 = inf

(𝑢,𝜔)∈D𝐽(𝑢, 𝜔). It means that the
process (𝑢

𝜔
∗ , 𝜔∗) = (𝑢

0
, 𝜔
0
) is optimal for the problem

(60).

Remark 10. From the proof of Theorem 9 one can see that it
suffices to assume weaker assumption on controls than𝑊 to
be compact and convex, namely only boundedness of 𝜔

𝑘
in

𝐿𝑝(Ω,R𝑚).

Remark 11. By a direct calculation, one can check that the
quadratic functional

F (𝑢) =
1

2
∫
Ω

(

(−Δ)
𝛼/4

𝑢 (𝑥)


2

− 𝜉|𝑢 (𝑥)|
2

) 𝑑𝑥 (66)

is strictly convex for 𝜉 < 𝜌
𝛼/2

1
and convex for 𝜉 = 𝜌

𝛼/2

1
where

𝜌
1
is the principal eigenvalue of the operator −Δ defined on

𝐻
1

0
(Ω,R).
Since

𝐹
𝜔
(𝑢) = F (𝑢)

+ ∫
Ω

(
𝜉

2
|𝑢 (𝑥)|

2

+ 𝜙
1

(𝑥, 𝑢 (𝑥))

+ ⟨𝜙
2

(𝑥, 𝑢 (𝑥)) , 𝜔 (𝑥)⟩) 𝑑𝑥

(67)

𝑢 ∈ 𝐻
𝛼/2

0
(Ω,R). Theorem 9 implies the following.

Corollary 12. The optimal control system (60) possesses at
least one optimal process (𝑢

𝜔
∗ , 𝜔∗) provided the functions 𝜙 of

the form (39) satisfy (𝐴1), (𝐴2), and (𝐴3), the integrand 𝜃
meets assumptions (A5) and (A6) and the function (𝜉/2)|𝑢|2 +
𝜙1(𝑥, 𝑢) + ⟨𝜙2(𝑥, 𝑢), 𝜔⟩ is convex in 𝑢 for some 𝜉 ≤ 𝜌

𝛼/2

1
, all

𝜔 ∈ 𝑊 and a.e. 𝑥 ∈ Ω.

Example 13. LetΩ be a cube of the form

Ω = 𝑃
3

(0, 𝜋) = {𝑥 ∈ R
3

: 0 < 𝑥
𝑖

< 𝜋, 𝑖 = 1, 2, 3} . (68)

Note that 𝑢
1
= sin𝑥

1
sin𝑥
2
sin𝑥
3
and 𝜌
1
= 3 are eigenfunc-

tion and eigenvalue for −Δ on 𝐻1
0
(Ω,R) since −Δ𝑢

1
= 3𝑢
1
.

Similarly, (−Δ)𝛼/2𝑢
1
= 3𝛼/2𝑢

1
hence, by (4), 3𝛼/2 is the first

eigenvalue for (−Δ)𝛼/2 in this case.The equation is of the form

(−Δ)
𝛼/2

𝑢 (𝑥) − 𝑎𝑢 (𝑥) + 𝑠|𝑥|
2

𝑢
𝑠−1

(𝑥) 𝜔
1

(𝑥) − |𝑥| 𝜔
2

(𝑥) = 0

for 𝑥 ∈ 𝑃3 (0, 𝜋) ,

𝑢 (𝑥) = 0 on R
3

\ 𝑃
3

(0, 𝜋)

(69)

for 1 < 𝑠 < 6/(3 − 𝛼), 1 < 𝑝 sufficiently large and the cost is
given by

𝐽 (𝑢, 𝜔) = ∫
Ω

[𝑢
𝑠

(𝑥) +

(−Δ)
𝛼/4

𝑢 (𝑥)


2

𝜔
1

(𝑥)

− |𝑥| (−Δ)
𝛼/4

𝑢 (𝑥) + |𝜔 (𝑥)|
2

− 𝜔
2

(𝑥)] 𝑑𝑥,

(70)
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where 𝑎 < 3𝛼/2, 0 ≤ 𝜔1(𝑥) ≤ 1, and 0 ≤ 𝜔2(𝑥) ≤ 1. Obviously,
the functional of action for system (69) has the form

𝐹
𝜔
(𝑢) = ∫

Ω

[
1

2


(−Δ)
𝛼/4

𝑢 (𝑥)


2

−
𝑎

2
𝑢
2

(𝑥)

+ |𝑥|
2

𝑢
𝑠

(𝑥) 𝜔
1

(𝑥) − 𝑢 (𝑥) |𝑥| 𝜔
2

(𝑥) ] 𝑑𝑥.

(71)

It is easy to check that the functionals 𝐹
𝜔
and 𝐽 satisfy

all assumptions of Theorems 8 and 9. By Remark 11, 𝐹
𝜔

is strictly convex. Thus, Theorem 9 implies that for any
control 𝜔 there exists exactly one solution 𝑢

𝜔
of (69) and

the solution continuously depends on control 𝜔. Moreover,
by Corollary 12, we infer that there exists optimal control
(𝑢
𝜔
∗ , 𝜔∗) described by (69) with the cost functional given by

(70).

6. Summary

In this paper we formulate some sufficient condition under
which the boundary value problem considered in the paper
possesses at least one solution which continuously depends
on distributed parameters. We based our approach on the
variational methods and we have investigated the stability
problem or continuous dependence problem for the prob-
lem involving fractional Laplace operator in the fractional
Sobolev space 𝐻

𝛼/2

0
(Ω,R) with distributed parameters 𝜔

from the space 𝐿𝑝(Ω,R𝑚) thus generalizing the stability
results obtained for the boundary value problem with the
Laplace operator in [1–3]. The stability results enable us to
prove the theorem on the existence of optimal processes to
some control problem with the integral cost functional.

The question of the existence of a solution for the
boundary value problem of the Dirichlet type, periodic,
homoclinic or heteroclinic type, and so forth was investigated
in many papers andmonographs. One can find a wide survey
of results and research methods in monographs [30, 31, 38–
41] and the references to be found therein. On the contrary
to the initial value problem the literature on the stability
problems for the boundary value problems governed by the
differential equation of the elliptic type is not very vast.
The stability of solutions of scalar second-order ordinary
differential equation with two-point boundary conditions
based on some directmethods related to the implicit function
theoremwas considered among others in the papers [42–46].

The question of the continuous dependence of solutions
of the linear elliptic equations with the variable Dirichlet
boundary data and parameters was investigated in the pio-
neering paper of Olĕınik compare [47]. In this work suffi-
cient conditions for stability of the linear partial differential
equation defined in the classical spaces of smooth solutions
were formulated. Analogous results for the scalar linear
partial differential equation with the Dirichlet boundary
conditions defined on the Sobolev spaces were proved in the
paper [48]. The results on the stability of multidimensional
nonlinear boundary value problems with variable parame-
ters appeared in papers [49–51] where ordinary differential

equations with two-point boundary conditions and variable
functional parameters were investigated, and the stability
conditions with respect to the strong and weak topology were
proved. Similar results for partial differential equation with
distributed parameters are given in papers [1–3, 52, 53].
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[9] X. Cabré and Y. Sire, “Nonlinear equations for fractional
Laplacians—I: regularity, maximum principles, and Hamilto-
nian estimates,” Annales de l’Institut Henri Poincare C.
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