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A bstract

The assumption o f multivariate normality is a basis o f the classical multivariate statistical 

methodology. Consequences o f departures from these assumptions have not been investigated well 

so far. There are many methods o f constructing multivariate normality tests. Some o f these tests 

are broader versions o f  univariate normality tests.

Most o f the multivariate normality tests which can be found in literature, can be divided into 

four categories:

1. Graph based procedures.

2. Generalized goodncs-of-fit tests.

3. Tests based o f  skewness and kurtosis measures.

4. Procedures based on empirical characteristic function.

The present paper is an attempt to assess selected tests from the point o f view o f their 

properties as well as possibilities o f their applications.
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1. Introduction

An overview of the subject literature shows that there exist at least 50 

procedures for testing multivariate normality. Despite the multitude of methods, 

R e n e  h e r  (1995) noted that since multivariate normality is not as 

straightforward as univariate normality, the “state o f the art” is not so refined. 

Although several reviews o f different methods were prepared (including 

A n d r e w s ,  G n a n a d e s i k a n ,  W a r n e r ,  1977; G n a n a d e s i k a n ,  1977; 

K o z i o l ,  1986; L o o n e y ,  1995; H e n z e ,  2002; M u d h o l k a r  and 

S r i v a s t a v a, 2002), none of them, however, is fully comprehensive. What is 

more, permanent proliferation o f papers containing new methods for testing 

multivariate normality makes it impossible to cover all available tests. Taking
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It is widely known that (see e.g. B i l o d e a u  and B r e n n e r ,  1999) a data 

vector is distributed as a p-dimensional multivariate normal distribution if and 

only if  all linear combinations of this vector are univariate normal, i.e.

x  ~  JV „ ( / i ,E )  О  t ' x  ~  V t  €  R "  (1)

It may seem natural that this fact is exploited by testing for multivariate 

normality only by testing a linear combination for univariate normality, where 

we can apply a well-regarded test of univariate normality. However, even if we 

are able to find a univariate normal lineal combination, we cannot state that the 

data vector is univariate normal unless we can prove that all such linear 

combinations are univariate normal.

2 .  M u l t i v a r i a t e  n o r m a l i t y  h y p o t h e s e s

Let x ,,...x n be independent p-dimensional random vectors of an identical 

distribution defined by a distribution function Fp(x), where X and 91я

are /7-dimensional real space. Let us denote a sample of n(n > p ) p-dimensional 

observations by means o f the following matrix:

*,2 •- * , /

x  =
*21 *22 ' • *2л

= [ x , , - . x j

* .2  • 1

while we apply the same denotations for random vectors as well as their 

realizations. Let us denote p-dimensional random vector by x and let 

N (x;//,E ) be a distribution function of p-dimensional normal distribution, 

where x e  is a point of and fi and £ are p-dimensional vectors of an 

expected value and (p * p)-dimensional covariance matrix (dispersion matrix), 

respectively. The fact that the random vector x has a distribution determined by 

the distribution function N  p(x\ //, E) can be symbolically expressed as follows:

x ~  Ф,,, (//,£).

Let us assume that HSMN  (simple hypothesis multivariate normality) 

denotes a hypothesis o f the form:



into account the amount o f work done in developing these tests, relatively little 

has been done as far as evaluation of the quality and power of testing procedures 

is concerned.

M u d h o l k a r  and S r i v a s t a v a  (2002) in their short paper focused on 

discussing a small number o f the possible tests and contradictory results that can 

be obtained by applying different tests of multivariate normality in well-known 

data sets. They concluded that the assumption of multivariate normality is 

“illusory” and that the attention should be drawn to understanding the effect of 

non-normality and developing robust procedures of data analysis.

This paper aims mainly at identifying procedures available in the literature 

and describing in more detail some of the procedures which seem to be most 

promising from the point of view of invariance and consistency. Moreover, the 

author considers the potential which can be used by researchers, even those 

without a strong statistical background. The final condition leads us to the tests 

whose critical values have a well-known asymptotic null distribution which can 

be easily determined, to the detriment of those procedures which require critical 

values that can be read from specialized tables or determined by means of 

simulations carried out by the user.

Many o f multivariate normality test procedures are extensions of tests of 

univariate normality. Most o f the available tests of multivariate probability can 

be devided into four categories:

• procedures based on graphical plots and correlation coefficients,

• goodness-of-fit tests,

• tests based on skewness and kurtosis measures,

• consistent procedures based on the empirical characteristic function.

Some of the tests do not fit any of the categories, mainly because they are

conceived as tests that can be used only in special circumstances, such as against 

a particular type of alternative distribution or with a particular form of data.

A lot of tests are used to test goodness-of-fit of the univariate normal 

distribution, including the well-regarded Shapiro-Wilk and Kolmogorov- 

Smirnov tests. If we assume that this approach could establish, by means o f the 

rejection of univariate normality of at least one component, that a random data 

vector is not multivariate normal, then we can note that it does not do anything 

towards showing fit to the multivariate normal. It is possible for a multivariate 

distribution to have each univariate marginal distribution that is normal without 

joint normality. B i l o d e a u  and B r e n n e r  (1999) give two examples to 

support the above statement; one where marginal distributions are normal but the 

joint distribution is a mixture of multivariate normal distributions and the other 

where the two marginal distributions are normal but the joint distribution is 

a Frank density rather than a multivariate normal distribution.



It is widely known that (see e.g. B i l o d e a u  and B r e n n e r ,  1999) a data 

vector is distributed as a p-dimensional multivariate normal distribution if and 

only if  all linear combinations of this vector are univariate normal, i.e.

x ~ Np(j i£ )  <=> ť x  ~ 7V(ť//,ťZ), Vt e R" (1)

It may seem natural that this fact is exploited by testing for multivariate 

normality only by testing a linear combination for univariate normality, where 

we can apply a well-regarded test of univariate normality. However, even if we 

are able to find a univariate normal lineal combination, we cannot state that the 

data vector is univariate normal unless we can prove that all such linear 

combinations are univariate normal.

2. M ultivariate norm ality hypotheses

Let X| ,  , . X „  be independent /»-dimensional random vectors of an identical 

distribution defined by a distribution function Fp(x), where X e iR '1, and 

are /»-dimensional real space. Let us denote a sample of n{n > p )  /;-dimensional 

observations by means of the following matrix:

X u X 12 ■ J
N

1

X 2\ X 22 ■ •
=  [ x , , . . . , x j

x P i X P 2 •

while we apply the same denotations for random vectors as well as their 

realizations. Let us denote p-dimensional random vector by x and let 

Np(\',/.i,'L) be a distribution function of /^-dimensional normal distribution, 

where x e У\р is a point of and /.i and £  are /»-dimensional vectors of an 

expectcd value and (j.> x />)-dimensional covariance matrix (dispersion matrix), 

respectively. The fact that the random vector x has a distribution determined by 

the distribution function N  (x; /.i, I )  can be symbolically expressed as follows:

Ф,,, (//,£)•

Let us assume that HSMN  (simple hypothesis multivariate normality) 

denotes a hypothesis o f the form:

H SM N:Fp(x) = N p(x-,pü,Z  о) (3)



i.e. Fp{\)  is a distribution function of the distribution N (//0,E0), where //0 

and E0 are the parameters concerned. In particular, HSMN* denotes 

a hypothesis of the form:

H S M N ' : Fp(x) = N p(x; 0 ,1) (4)

that is Fp(x) is a distribution function of the distribution Â p(0;I).

Let, moreover, HCMN  (composite hypothesis multivariate normality) 

denote a composite hypothesis:

HSMN* : Fp (x) = N p(x\/.i, I ) ,  (5)

that is Fp(x) is a distribution function o f the distribution N p(//;E) o f unknown 

parameters // and E.

Unbiased estimators of parameters ц  and E, obtained by means of a 

generalized least random squares method, are a sampling vector o f expected 

values x and a sampling matrix S, respectively. They are as follows:

ИХ = x l  = Xj (6)

y=I

where 1 is «-dimensional vector consisting of ones, and:

(n -1 )S  = x I — 11 х'г = Z (* y  -  x)(x,. -  x / = £  xyX;  -
M  y=l

— г
И XX .

Both estimators x and S are mutually stochastically independent and form 

a configuration o f statistics sufficient for // and E. What is more, if

'  1 .Л
and S has p-dimensional non-central Wishartx -  A4//; I ) ,  then x ~ N  / / ;—E

4  «

distribution Wp(n;ľ,,/j). The sampling covariance matrix is determined non- 

negatively, although in most practical cases it is determined positively.
I

If the matrix E is determined positively, then there exists such a matrix I 2

being a symmetrical square root of the matrix E, that E 2 IE  2 =1. Then for the

random vector y = E 2( x - / / )  we obtain £ (y ) = 0 and D(y) = l. (E( )  and 

D()  denote an expected value, a variance and a covariance matrix, 

respectively). Therefore, if x ~ N p(//;Z), then у  ~ A^(0;I).



If we assume that a rank of the matrix £ equals (k < p ), then we can find

a matrix £ +being a generalized Moor-Penros inverse o f the matrix £  and

i i  i i 

(£ +)2 = (£ 2)+. It is possible since £ = P D 1P / and £ 2 = PD 2P r , where P is an

orthogonal matrix whereas is a diagonal matrix of eigenvalues of the matrix

£ on a diagonal. At the same time, parameters of a random vector distribution

z = (E2)+( x - / / )  are £(z) = 0 and

i  I  1 _ !

D(z)  = (£ 2)+ E[(E2)+ f  = PD~,2 P 7 PDX Р гР1)д2 P 7 =

-i i  

= PD~2D ^ ~ 2P r = P P r x I

Therefore, if x ~ N p (//;£ ) and r(L) = k<  p,  to z ~ A r/.(0;I).

The further part o f this paper presents testing procedures for verification of 

hypotheses that the sample X stems from a multivariate normal population. Still, 

we assume thatrz(E) = p, if rz(Z) = lc, then in the particular tests it is necessary 

to replace p  with к (see M a r d i a ,  1980).

The union-intersection principle of R о у (1953) was used by M a 1 k o v i c h 

and A fi fi (1973) to generalize some of the univariate nonnality tests for 

a multivariate case. They based their assumptions on the theorem that 

x ~ N p (//;£ ) if and only if с/ х ~ Л г,(с/ / / ,с / £с) for all vectors c e W '’ and

с Ф 0 . The proof for this theorem can be found, among others, in a monograph 

of R a  o(1982).

Let us denote by //k(c) = £ '|[ c 7'x - c 7£,(x)]* | a central moment o f the rank

k, (k = 2 ,3,...) dependent on a vector c *0 .  M a l k o v i c h  and A f i f i  (1973) 

proposed measures of distributions of the following form:

a) multivariate skewness coefficient:

A.p(c).*=/ff (c)/ /fj(c) (7)

b) multivariate kurtosis coefficient:

P2.p(.c) = Ma (c ) U ‘22(c ) (8)

Their sampling counterparts are, respectively:

b \ ,p  (c) = n m \  1  m 2 i K p  (C) = ,Ш4 1 m 2 (9)



where:

« * = - £ ( ! , - £ ) *  (к = 2,3,...) 
п  j - k

is a sample central moment Lv ...Ln with an average L, while

Lj = crx; (y = l,..., n).

There is no reason to reject the hypothesis H 0 : /?, (c) = 0, if 

ft*p = max ft, p (c) < , where is a certain constant. Similarly, there is no 

reason to reject the hypothesis H 0 : ß l p {с) = 0, if

(Ь[ р)г = max{ft2p(c) -  K(n)}2 <КЫ , where /£ («)->  3, if л -»оо and

is a certain constant. The constants taking into consideration the

particular conditions imposed on с (e.g. c7c = l)  can be found by means of the 

Monte Carlo method.

Ordering Lj in a non-decreasing sequence L(l) <...< L{ll) we express 

a S h a p i r o - W i l k ( l  965) statistic towards a vector с o f the form:

W{c) = / ( n m 2) (10)

where {cijn } are constant nonnalized coefficients (applied in the paper of, 

among others, D o m a ń s k i  (1990)), satisfying the following conditions:

± a , n = 0 m d ± a l = l  (« = 3,4 ,...) (11)
j-1 j-\

Starting with a property of the statistic W (C) for univariate normality, 

M a l k o v i c h  and A f i f i  (1973) proposed choosing с = A _l( x , - x ) / a , „, 

where A = («-1)S . Then, in order to obtain the value fV(c), it s necessary to 

take the vector x , , that is one from among x ,,...,x n, so that the denominator 

W(c) reaches the largest value. Hence, we obtain the following generalized 

statistics fV(c) for a multivariate case:



У» I
(12)

where (zmz j  = max{z,z,} and £/(1) < . . .< t / ()i), while U} = z;„z,(y = l,

We reject the hypothesis (1) if Wm <Wan, where Wan is a quantile of the rank 

a  of the Shapiro-Wilk distribution.

3. G eneralized Shapiro-W ilk test

The generalized Shapiro-Wilk test W is a modification o f the Shapiro-Wilk

test W (1965) for a multivariate case. In the test Wp we use constants which are

linear coefficients o f combinations of order statistics of simple sample 

observations.

The construction o f the test Wp proceeds as follows:

1. On the basis of the matrix X , we create the matrix

A = £ ( x y - x ) ( x ; - x ) 7 
j-1

2. From among vectors xy.(y' = l, 2..... n) we select such a vector xm, for

which:

(x„, -Ю А ''(х ,„  - x )  = max{(x - x ) TA ~ \x .  -x )}
IŚJ&it J J

where A '1 is a matrix inverse to the matrix A .

3. Basing on the determined vector x,„, we calculate:

Uj =( xm- x ) TA~‘( x j - x )  for у = 1 ,2 ,...,я

4. We order the value (Jfl) < Um <... Uw

5. We determine a value o f the statistic:



where h = n l2 or h= (n-\)/2  for even or odd n respectively, while aUn)(i=\,2,...,h) 

are coefficients presented in Table 1.

Tabl e  I

Critical values for the Shapiro-Wilk multivariate normality lest for p  = 2

Smoothed values Non-smoothed values

n 0.010 0.050 a  = 0.01 a  = 0.05

5 0.5859 0.6467 0.6002 0.6395

6 0.6232 0.6991 0.6147 0.7000

7 0.6543 0.7222 0.6667 0.7303

8 0.6808 0.7488 0.6877 0.7515

9 0.7035 0.7706 0.6950 0.7736

10 0.7232 0.7888 0.7058 0.7834

11 0.7405 0.8043 0.7163 0.7860

12 0.7558 0.8176 0.7562 0.8110

13 0.7694 0.8292 0.7592 0.8231

14 0.7816 0.8393 0.7633 0.8345

15 0.7925 0.8482 0.8043 0.8455

16 0.8025 0.8562 0.8077 0.8541

17 0.8115 0.8633 0.8081 0.8646

18 0.8198 0.8697 0.8140 0.8767

19 0.8274 0.8756 0.8205 0.8790

20 0.8344 0.8808 0.8392 0.8849

S o u r c e :  own calculations.

Small values o f Wp show that the distribution o f a given population is not 

a multivariate normal distribution. Therefore, the test Wp is a left-sided test.

Hence, we reject the hypothesis (5) if Wp <Wp . Critical values Wp can be read 

from Tables 2 and 3.

While constructing critical values for the generalized Shapiro-Wilk test, 

some problems concerning smoothing these values arise (see D o m a ń s k i ,  

G a d e c k i ,  W a g n e r ,  1989).

New approximation by means of the following function was proposed:

fVk(x) = bl( x - b })/(b2 +x) .



Fig I . Curves o f critical values o f the Shapiro-Wilk generalized normality test for a  = 0,05 and

p  = 2 , 3 , 1 0

More precise results were obtained (see Table 1 fo rp  = 2), especially for 

small n and significance level a  = 0.01. Tables 2 and 3 present exponential 

critical values o f the Shapiro-Wilk test of multivariate normality for two- 

dimensional distribution (p  = 2) and three-dimensional distribution (p  = 3). 

Figure 1 represents the curve of critical values of generalized Shapiro-Wilk test 

for «  = 0.05 and p  = 2,3,...,10.

T a b l e  2

Smoothed critical values for the Shapiro-Wilk multivariate normality test for p  = 2

n 0.010 0.050 n 0.010 0.050

5 0.5859 0.6467 33 0.8918 0.9223

6 0.6232 0.6891 34 0.8947 0.9242

7 0.6543 0.7222 35 0.8974 0.9261

8 0.6808 0.7488 36 0.8999 0.9278

9 0.7035 0.7706 37 0.9024 0.9295

10 0.7232 0.7888 38 0.9047 0.9310

11 0.7405 0.8043 39 0.9070 0.9326

12 0.7558 0.8176 40 0.9091 0.9340



Tabela 2 (contd.)

n 0.010 0.050 n 0.010 0.050

13 0.7694 0.8292 41 0.9111 0.9353
14 0.7816 0.8393 42 0.9131 0.9367
15 0.7925 0.8482 43 0.9149 0.9379
16 0.8025 0.8562 44 0.9167 0.9391
17 0.8115 0.8633 45 0.9185 0.9402
18 0.8198 0.8697 46 0.9201 0.9413
19 0.8274 0.8756 47 0.9217 0.9424
20 0.8344 0.8808 48 0.9232 0.9434
21 0.8408 0.8857 49 0.9247 0.9443
22 0.8468 0.8901 50 0.9261 0.9453
23 0.8523 0.8942 55 0.9325 0.9494
24 0.8575 0.8990 60 0.9380 0.9529
25 0.8623 0.9015 65 0.9426 0.9559
26 0.8668 0.9047 70 0.9466 0.9585
27 0.8711 0.9077 75 0.9502 0.9607
28 0.8751 0.9106 80 0.9533 0.9627
29 0.8788 0.9132 85 0.9561 0.9644
30 0.8823 0.9157 90 0.9585 0.9659
31 0.8857 0.9180 95 0.9608 0.9673
32 0.8888 0.9202 100 0.9628 0.9686

S o u r c e :  own calculations.

T a b l e  3

Smoothed critical values for the Shapiro-Wilk multivariate normality test for p  = 3

n 0.010 0.050 n 0.010 0.050

6 0.5038 0.5628 26 0.8370 0.8798
7 0.5490 0.6142 27 0.8424 0.8840
8 0.5867 0.6547 28 0.8475 0.8879
9 0.6186 0.6875 29 0.8523 0.8915

10 0.6460 0.7146 30 0.8567 0.8949
11 0.6698 0.7373 35 0.8757 0.9091
12 0.6907 0.7567 40 0.8904 0.9198
13 0.7091 0.7734 45 0.9021 0.9283
14 0.7254 0.7879 50 0.9117 0.9351
15 0.7401 0.8007 55 0.9196 0.9407
16 0.7533 0.8120 60 0.9263 0.9454
17 0.7652 0.8221 65 0.9320 0.9494
18 0.7761 0.8311 70 0.9369 0.9528
19 0.7560 0.8393 75 0.9413 0.9558
20 0.7951 0.8467 80 0.9451 0.9584
21 0.8035 0.8535 85 0.9485 0.9607
22 0.8112 0.8596 90 0.9515 0.9608
23 0.8184 0.8653 95 0.9542 0.9646
24 0.8250 0.8705 100 0.9566 0.9663
25 0.8312 0.8754

S o u r c e :  own calculations.



4. Power studies

Taking into consideration the development of dozens of tests for the 

multivariate normality issue, we can note that there is still much to do as far as 

assessing the quality o f these tests is concerned. A n d r e w s  (1973) prepared 

a “preliminary report” on the handful of tests available at that time. 

D ’ A g o s t i n o  (1986) stated that “little has been done by way of power studies 

for multivariate normality tests” and that no definitive recommendations could 

be made. L o o n e у (1995) noted that there was lack of information on the power 

of these tests.

While developing their own tests, researchers have done a lot of work to 

compare these tests by means of Monte Carlo methods. Generally, a new test is 

compared with a handful of other tests against a very limited number of 

alternative distributions.

Although a few comprehensive power studies for multivariate normality 

exist, none of them is fully comprehensive, since it would be unreasonable to 

test every method and impossible to test every possible deviation from 

normality. Majority of the most comprehensive studies have deliberately limited 

the scope o f their interest to either a particular category of tests or to considering 

the most popular or promising tests.

W a r d  (1988) compared the power of Merdia’s skewness and kurtosis tests, 

the Malkovich-Afifi extension of the Shapiro-Wilk tests, Hawkins extension of 

the Anderson-Darling test, the Mardia-Foster omnibus test and two of his own 

proposals that extended the Kolmogorov-Smirnov and Anderson-Darling tests.

In general, Ward concluded that Mardia’s skewness test, Hawkins tests and 

his own Anderson-Darling type test were the strongest. None of these tests, 

however, was good enough against the multivariate / distribution, which is 

a mild deviation from normality. Ward noticed that the power o f the Malkovich- 

Afifi test, contrary to previous findings, decreased as the number of variables 

increased ( M a r d i a ,  1980). Ward formulated a hypothesis that the power of 

these procedures seemed to be related to the correlation structure, probably 

through the determinants of the variance-covariance matrix.

Although Mardia’s tests seemed to be more effective, none of these tests 

was considered the best. H o r s  w e l l  and L o o n e y  (1992) suggested that 

neither affine-invariant nor coordinate-dependent tests can be regarded as 

superior to the others. They also questioned the “diagnostic” capabilities of this 

category of tests particularly effective against skewed or kurtotic alternatives. 

However, they stated that the performance of the skewness tests depended not 

only on the skewness of the distribution, but also the kurtosis. The power of 

skewness tests tended to be inflated when compared to alternatives with greater



than normal kurtosis and depressed when compared to alternatives with less than 

normal kurtosis.

R o m e u  and O z t u r к (1993) considered ten different tests of multivariate 

normality, the Romeu-Oztur Qn -Cholesky and Qn -  I ' 1 statistics, Mardia’s tests 

of skewness and kurtosis, Koziol’s Cramer-von Misesa test, Koziol’s “radii and 

angles”, the Cox-Small method, the Malkovich-Afifi test of skewness, Hawkins- 

Anderson-Darling test, and Royston’s extension of the Shapiro-Wilk test. A 

wide range of sample sizes, dimensions, significance levels, and alternative 

distributions were considered.

Romeu and Ozturk compared these ten tests to sixteen different 

distributions, ranging from the multivariate normal to severe departures from 

normality. However, as always none of these tests is the best for all situations. 

They found that two Qn tests and Royston’s test are the best for general 

situations of severe or moderate non-normality. For deviations in normality due 

mainly to skewness, Mrdia’s skewness test, Malkovich and Afifi’s test and 

Koziol’s angles test were the best. For deviations in normality due to kurtosis, 

Mardia’s kurtosis test, Koziol’s Cramer-von Mises test and Hawkins test were 

the best. The Cox-Small test was found to be the best for alternatives that had 

a mild departure from multivariate normality.

Romeu and Ozturk noted that Royston’s test and especially Koziol’s “radii 

and angles” test were sensitive to the correlation structure of the distribution and 

had algorithmic problems. Thus, they advised against the use o f any o f these 

tests. On the contrary, Mardia’s tests were considered to be quite effective 

generally. The only problem with Mardia’s tests was a slow convergence to the 

asymptotic null distribution. That is why, Romeu and Ozturk recommended (in 

general) the use of empirical critical values rather than asymptotic critical 

values. They provided a table of empirical critical values for the tests 

considered.

M e с 1 i n and M o u n d fo  r d (2003) investigated the following eight tests 

of multivariate normality that used asymptotic critical values:

-  Mardia’s test for multivariate skewness,

-  Mardia’s test of multivariate kurtosis,

-  The Mardia-Foster C,2 omnibus statistic,

-  The Mardia-Kent omnibus statistic,

-  The Royston’s multivariate Shapiro-Wilk test,

-  The Romeu-Ozturk test,

-  The Mudholkar-Srivastava-Lin extension of the Shapiro-Wilk test and

-  The Ilenze-Zirkler empirical characteristic function test.

Mecklin and Mundford reasoning for preferring tests o f multivariate 

normality that use asymptotic critical values, was that of convenience for the 

researcher in not having to construct one’s own table o f critical values.



However, M e с к 1 i n (2000) in addition to the eight tests mentioned above that 

used critical values, also considered the following tests that used empirical 

critical values:

-  Hawkin’s extension o f the Anderson-Darling-Hawkins test,

-  Koziol’s extension of the Cramera-von Mises test,

-  The Paulson-Roohan-Sullo version of the Anderson-Darling test,

-  Singh’s test of the correlation of the beta plot with classical estimates of 

mean and variance, and

-  Singh’s test of the correlation of the beta plot with robust M-estimates of 

mean and variance.

M e с к 1 i n and M u n d f  r o m (2003) evaluated the power of the eight tests 

mentioned above in a Monte Carlo study against both the multivariate normal 

distribution and twenty six alternatives to normality. A wide range of sample 

sizes and dimensions were sampled. Some of the combinations involved sample 

sizes which are quite small for multivariate analysis and where asymptotic 

critical values may perform poorly. As it was emphasized by R o m e u  and 

O z t u r k  (1993) and M u l d h o l k a r  and S r i v a s t a v a (2002), convergence 

to the asymptotic distribution is often very slow for multivariate normality tests 

and requires n to be as large as 200. Unfortunately, M e c k l i n  and 

M u n d f o r d  (2003) considered only smaller values, namely « = 20, 51, 100. 

Mecklin and Mundfromk discovered that the tests of Mardia-Foster, Mardia- 

Kent, Romeu-Ozturk and Mudholkar-Srivastava-Lin had Type I error rates in 

some of the situations exceeded 0.10 (twice the nominal rate o f a  = 0.05) 

against data generated to be multivariate normal.

5. Final remarks

The assumption that a multivariate data set stems from a multivariate 

normal distribution is central to many commonly employed multivariate 

statistical methods. If this assumption does not hold, the results of the statistical 

analysis become suspect. A lot of multivariate analysis are minimally 

acceptable, as researchers often have to use samples which are not ideal, both in 

terms of sample size and the methodology applied in case of these samples.

The initial attempts to test multivariate normality began over thirty years 

ago. H e a 1 у (1968) extended the Q — Q plot to the chi-square plot often used to 

graphically assess multivariate normality. Mardia proposed multivariate 

measures of skewness and kurtosis. They are very useful both as descriptive 

statistics for a multivariate sample and as the basis for two very useful tests for 

the multivariate normality issue. Mardia’s tests are probably the most popular 

formal procedure for goodness-of-fit to the multivariate normal distribution.



Many multivariate extensions of the standard multivariate goodness-of-fit 

procedures, such as the chi-square Kolmogorov-Smirnov, Cramer-von Mises 

and Anderson-Darling, have been proposed. Some o f the most promising efforts 

of this type are due to Hawkins, Koziol and Paulson. Efforts have also been 

made to extend the Shapiro-Wilk test of multivariate normality.

The approaches to testing multivariate normality by means of either 

goodness-of-fit procedures or measures of skewness and kurtosis have been 

subject to theoretical criticism. These categories of tests were criticised for the 

lack of consistency against all possible alternatives and for not being “truly” 

multivariate procedures.

Comparisons of power for tests of multivariate normality have been carried 

out. However, there has been no uniformity in the tests analysed or the 

alternative distributions studied. The only tests that have been considered in 

almost every power study are the skewness and kurtosis tests of Mardia. 

Generally, Mardia’s tests have been considered effective, although their 

application as a “diagnostics” in order to find a reason for non-normality was 

questioned by both Horswell, Looney and Henze. Other tests which are 

potentially useful include those of K o z i o l  (1993), R o y s  t o n  (1983) and 

particularly II e n z e and Zi n k l e r ( 1 9 9 0 ) .

The previous investigations revealed that none of the methods is good 

enough as far as multivariate normality testing is concerned. The graphic 

approach, such as the visual inspection of a chi-square plot or beta plot, will 

signal gross departures from normality and alert one to outliers. Multivariate 

measures o f skewness and kurtosis are useful both as descriptive statistics for the 

multivariate data set and as the basis for normality tests. More complex 

procedures, such as combinations of skewness and kurtosis, generalizations of 

univariate goodness-of fit tests, or the newer class of consistent tests require 

further investigations.

Finally, it is worth drawing our attention to the asymptotic critical values, 

which can be also applied for very large n (n > 200). Therefore, application of 

empirical critical values in the tests of multivariate normality is advisable (see 

section 3).
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Czesław Domański 

Próba oceny testów wielowym iarowej norm alności

Założenie o wielowymiarowej normalności leży u podstaw klasycznej metodologii statystyki 

wielowymiarowej. Konsekwencje odstępstw od założenia normalności rozkładów zmiennych 

losowych nie są jeszcze dostatecznie poznane. Istnieje wiele różnych metod konstrukcji testów



wielowymiarowej normalności. Część tych testów stanowi rozszerzenie testów jednowymiarowej 

normalności.

Większość prezentowanych w literaturze przedmiotu testów wielowymiarowej normalności 

można podzielić na cztery kategorie:

1) procedury oparte na wykresach graficznych,

2) uogólnione testy zgodności,

3) testy oparte na miarach skośności i spłaszczenia,

4) procedury oparte na empirycznych funkcjach charakterystycznych.

W artykule będzie przedstawiona próba oceny wybranych testów zarówno z punktu widzenia 

ich własności, jak i możliwości ich stosowania przez badaczy nawet bez gruntownego 

przygotowania statystycznego.


