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Summary. In this paper option pricing is treated as an application of Bayesian predictive 

analysis. The distribution of the discounted payoff, induced by the predictive density of future 

observables, is the basis for direct option pricing, as in Bau wens and Lubrano (1997). We 

a!so consider another, more eclectic approach to  option pricing, where the predictive distribution 

° f  the Black-Scholes value is used (with volatility measured by the conditional standard 

deviation at time o f maturity).

We use a model framework that allows for two types of asymmetry in GARCII processes: 

skewed t conditional densities and different reactions of conditional scale to positive/negative 

shocks. Our skewed t-G A R CH (l, 1) model is used to describe daily changes of the Warsaw 

Stock Exchange Index (WIG) from 4.01.1995 till 8.02.2002. The data till 28.09.2001 are used 

to obtain the posterior and predictive distributions, and to illustrate Bayesian option pricing 

r° r the remaining period.

Keywords: Bayesian inference, financial econometrics, derivative pricing, volatility models, 

forecasting

1. INTRODUCTION

The paper presents two Bayesian approaches to option pricing; both 

use univariate daily time series o f a basic financial instrum ent. I he 

distribution o f the payoff function, induced by the predictive density of 

future observables, is the basis for direct pricing. This first approach, 

Proposed by Bauwens and Lubrano (1997), relies only on the statistical 

model for discrete observations. We also consider another (more eclectic) 

approach to option pricing, where the predictive distribution ol the famous 

Black-Scholes value is calculated using the same discrete statistical model 

as in the direct approach.
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Our model framework generalises univariate AR -  t-GARCH specifications 

from previous Bayesian studies; see Kleibergen and van Dijk (1993), 

Bauwens and Lubrano (1997, 1998), Bauwens, Lubrano and Richard

(1999). We allow for two types of asymmetry in GARCH processes. The 

first one means different reactions of conditional scale to positive and 

negative shocks and is modelled in the way proposed by Glosten, Jagannathan 

and Runkle (1993), and used by Bauwens and Lubrano (1997, 1998). The 

other type is asymmetry of conditional distributions, modelled through 

skewed Student t family that has been defined in a general multivariate 

framework by Fernandez, Osiewalski and Steel (1995). Univariate skewed 

t family was analysed by Fernandez and Steel (1998), who used it, however, 

in simpler models, without any ARCH-type structure. Osiewalski and 

Pipień (1999) adopted the skewed t distribution for error terms in GARCH 

processes, thus generalising and unifying the works by Bauwens and 

Lubrano (1998) and Fernandez and Steel (1998). By introducing the free 

mode param eter of the skewed t conditional sampling distribution of 

a GARCH(1, 1) process, Osiewalski and Pipień (2000) proposed a formal 

statistical approach to the derivation and testing of the GARCH-in-M ean 

(GARCH-M ) effect, first considered by Engle, Lilien and Robins (1987). 

Osiewalski and Pipień (2003) used this approach for a general GARCII(/>, q) 

process, considering the choice of (p, q) through posterior odds. Here, 

again, we restrict considerations to the most important case, the G A R C H (1,

1) specification.

Our Bayesian model, defined in section 2, is used in section 3 to 

describe daily changes of the Warsaw Stock Exchange Index (WIG) from 

04.01.1995 till 28.09.2001. Section 4 focuses on option pricing treated as 

one of the main applications o f Bayesian predictive analysis. Note that 

Osiewalski and Pipień (2003) also considered Bayesian option pricing; they 

presented results based on the WIG data from the very beginning of the 

Warsaw Stock Exchange (April 1991) till the end of 2000.

2. TH E BAYESIAN M ODEL FOR DISCRETE OBSERVATIONS

Let x, denote the price of an asset or an exchange rate or, as in our 

application, the value of a stock market index (at time t). For x t we assume 

an AR(2) process with asymmetric GARCH(1, 1) errors. In terms of 

growth or return rates (expressed in percentage points) yt =  100Д In x, =  

=  lOOlnix./jc,-!), our model can be written as

yf =  á +  P ( > 't - i - ^ )  +  <5ilnxf_1 +  e„ t = 1, ..., T  + k (1)



where T  observations are used in estimation, к is the forecasting horizon, 

e, =  z j h „

ht = a0 + fljfi,2- 1/(e ,_ i <  0) +  a{ e,2- 11(et- 1  ^  0) +  ftj/ir- 1  (2)

and we treat h0 as an additional parameter. Our specification of asymmetric 

reactions to positive and negative shocks, given in (2), follows Glosten, 

Jagannathan and Runkle (1993); it nests the basic symmetric ARCH and 

GARCH processes introduced by Engle (1982) and Bollerslev (1986).

We assume that z, are independent skewed t random variables with 

v > 2  degrees of freedom, mode £ e ( — oo, +  oo), unit precision and asymmetry 

parameter у >  0. The density is:

2Г((у +  1)/2) .

(ľ +  r W ) ^
(3)

• [ l + ( z - í ) 2v ‘{ ^ ( - « .o X z - O  +  ľ 2/<o.+ » ) ( * - О}]
- ( v  +  D /2

Note that у =  1 corresponds to the usual symmetric Student t distribution. 
In general, y2 measures the degree of distributional asymmetry, as it is the 
ratio of the probability masses on the right and on the left side of the

mode of zt:

2 _  Pr(z, ž  0

У ~  Pr(zt < 0

The moments o f zt and the conditional moments of et (given the past of 
the process, y/, -1 , and the parameters) take the form:

£ (;,!„  С У) =  { +  = (  +  , f ry )
(ľ + У- ‘)(v — l)r(v/2)VnV

E ( e , \ „  v, С. У) = s/h,E(z<) =  Ä Í  +  T^ ' v»

Var „  v. С. У) =  » ?  =  Й, ( (? + 7 - T j ( — ^  v))  “  h^ -  v>

see Fernandez and Steel (1998) and Osiewalski and Pipicń (1999, 2000,
2003). Remark that r(y,v) =  0 iff у = 1 , and r  measures the efTect of 
distributional asymmetry on the mean of zt.



The conditional distribution of yt (given the past of the process, 
and the parameters) is skewed Student t with v > 2  degrees of freedom, 

asymmetry parameter y > 0 ,  mode p t = ô + p (y t- i  — S) +  ô l l nxt_! +  C\/h(, 

and precision A,-1 , where inverse precision h, is defined in (2). The density 

function is

p(y, \Vt-i ,0) = f . k s ( y < \ v , ^ ,K \  y) =  h< 1/2'
(ľ +  У lW(.v/2)yJnv (5)

• [1 +  (y, - p,)2(vh,) - 1 {y2I(_„.o)(y, - //,) +  У~2110. + со)(У, - /^,)}]"(,,+ 1)/z

where 0 = (C, v,ô,Sl t p ,y ,h 0, a0, ait a t ,  b,)'  groups all the parameters. The 

sampling model is represented by the following joint density function of 

T  observed and к forecasted values:

T  +  lк Г  +  Jk

P (y ,y f \0 )=  П Р(Ус1 V't-1,0) = П/.юО'гк^Л'1,)')-
r = l  t = l

This density conditions on some initial observations, which are not shown 

in our notation.

Our assumptions lead to a GARCH-M representation o f (1), namely:

y, = ö + p (y , - l - ö )  + ö l Inx ,_x +  tpjh,  +  u„ E(u,) = 0 (6)

where u, = et — E(etli//,-1,v,C.y) — e, — ę>y/h, and the GARCH-M  effect is 

measured by the following function of basic parameters:

9 »  =  E(z,\v,C.y) = С + Ф.  v ) .

Note that <p can be zero (no GARCH-M effect) iff С = — т(у, v), i.e. 

when the free location parameter С compensates the effect of asymmetry 

on the mean of the process (as measured by r). It should be stressed 

that the stochastic specification in (5) enables modelling statistical sources 

of the GARCH-M  effect (distributional asymmetry, non-zero location

О and m aking formal inference both on the total m agnitude of this 

effect and on its components. Form al testing of this effect am ounts 

to testing <p =  0, a complicated non-linear restriction on £, v and y. 
Our GARCH-M  parameterisation differs from the usual one. If we rewrite 

(6) in terms of the conditional sampling standard deviation a, =  -Jht d(y, v), 

we obtain:

y, = Ö + p(yt- l - ô )  + ô l \nx t - l + кт, + и, (7)



where Я =  Я(£, y, v) =  <p/Jd(y, v) and (7) is closer to the original paramete- 
risation of the GARCH-M effect as in Engle, Lilien and Robins (1987); 
see also Bollerslev, Chou and Kroner (1992) and Shepard (1995). Of course, 

(6) is more general than (7) since the former does not require the existence 

o f conditional variance (it needs only v > l ) .  However, assuming v > 2  we 

follow the most popular way of modelling risk through the (conditional) 

standard deviation. Note that in our form ulation e,-j,  and not 

ut - j  = — tof- j) ,  enter the GARCH equation (2).

Note that the AR(2) model, as in Bauwens and Lubrano (1998) and 

Bauwens, Lubrano and Richard (1999), enables to make inference on the 

presence of a unit root in lnx,. If =  0 then (1) reduces to an AR(1) 

process for y t =  lOOAlnx,, i.e. a unit root process for lnx,.

Our Bayesian model is defined through the joint density of all the 

observables and unknown parameters:

Р(У> У/ ,0)  = p ( y , y f \0)p(0),

where p(0) is the marginal (or prior) density of the parameters. The prior 

density in our AR(2)-GARCH(1, 1) model is:

P(0) = p(Op(v)p(ô)p(Sl)p(p)p,(y)p(h0)p(a0)p(al)p(at)p(bl ),

where p(() and p(ô) are standard normal, p(St ) is normal with mean 0 and 

standard deviation 0.1 , p(p) is uniform on the interval (-1, 1), p(y) is log

-  standard normal (truncated at 0.5 and 2), p(v) is exponential with mean 10, 

truncated at 2 as v >  2 , p(h0) and p(a0) are exponential with mean 1 , and 

P(a i). Á a i+), p(bi) are uniform on the unit interval. These assumptions reflect 

rather weak prior knowledge about the parameters. In the case when S, =  0,

У =  1 and £ =  0 , ô  is the expected (systematic) daily growth or return rate (in 

percentage points); its most likely value is zero and the standardised normal 

distribution is spread enough to represent little prior knowledge. The normal 

prior for S1 is located around =  0, reflecting prior beliefs in the unit root 

model for lnx,. However, other processes arc not ruled out a priori. The 

uniform density for p refers only to the usual restriction p e (  — 1, 1)- Our prior 

distribution of у assumes that not more than 80% of the sampling probability 

mass can be located on one side of the mode and that symmetry is the most 

likely situation. The priors for the remaining parameters are very flat. In 

particular, we expect low values of v, but situations close to conditional 

normality (v >  30) are still possible. Our joint prior distribution is proper, thus 

leading to the well-defined posterior distribution. Note that the use of the 

improper uniform prior for the degrees of freedom parameter would preclude 

the existence of the posterior distribution; see Bauwens and Lubrano (1998).



Fig. 1. The log of Warsaw Stock Exchange Index (WIG), 04.01.1995-08.02.2002
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The prior distribution for our basic parameters induces prior probability 
distributions for all their measurable functions. In particular, Osiewalski and 
Pipień (2003) present histograms of the implied prior distributions for г and (p. 

The posterior distribution of 0 has a density of the form

p(0\y)ccp(0)p(y\0) = p(0)Y[p(y, \v , - i ,Q)  = P ( 0 )  Y\ f* s< ,y , \ v ,H „K\У),
r=l * = 1

which combines the prior density and the likelihood function.

3. M ODELLING AND FORECASTING 

TH E  WARSAW STOCK EXCHANGE INDEX (WIG)

In order to illustrate the Bayesian analysis of financial time series using 

our GARCH model with asymmetries, we use consecutive daily values 

of the W arsaw Stock Exchange Index (W arszawski Indeks Giełdowy 

WIG, x t) from 29.12.1994 till 28.09.2001. Thus, for the logarithmic 

growth rates y, we have 1686 observations. As the first three growth 

rates are used as initial conditions, we model T =  1683 observations on y, 

(4.01.1995-28.09.2001). The data from the period 4.01.1995-8.02.2002 are 

plotted in figures I and 2. The sub-period 1.10.2001-8.02.2002 (separated 

by the vertical line) is used for ex post analysis of forecasts generated by 

our model.

The posterior means and standard deviations of basic parameters are 

presented in table 1 and table 2. Note that conditional normality is clearly 

rejected by the data. The results also show possible skewness and positive 

GARCH-M  effect, although formal Bayesian testing (not presented here) 

does not lead to clear rejection of the hypothesis of distributional symmetry 

(y =  1) and no GARCH-M  effect (<p =  0 or, equivalently, A =  0). There is 

enough evidence in favour of the simple unit root in Inx, (<5Х =  0) and in 

favour of small but significant positive autocorrelation in у, (p як 0.2).

Table 1. Posterior means and standard deviations of the basic parameters

Para-

meter P ô Y V С “ о a i < b t *0

E() 0 0 0 1.0767 12 0 1 0.5 0.5 0.5 1
D () 0.5773 I 0.1 0.4115 10 1 1 0.2828 0.2828 0.2828 1

E(\y) 0.1842 -0.1657 -0.0137 0.9523 8.4123 0.2074 0.1857 0.1772 0.1038 0.7541 1.3911

ß(-|y) 0.0259 0.3088 0.0957 0.0325 1.6915 0.1176 0.0640 0.0426 0.0243 0.0489 1.2058



Table 2. Posterior means and standard deviations of GARCH-in-Mean
parameters

Parameter T Í <p =  T +  С /■“s 
Í 

*

1•4
E(-\y) -0.0875 0.2074 0.1199 0.1037

D ( \ y ) 0.0607 0.1176 0.1014 0.0876

As regards asymmetry of the reactions to positive and negative shocks, 
our results show that the impact of negative shocks on volatility may be 
somewhat stronger; formal inference can be based on the posterior distribution 
of the ratio ai/ a i . The prior density of this ratio, induced by the independent 
uniform priors of both parameters, as well as the (appropriately scaled) 
posterior histogram of a1/ a i , are plotted in figure 3. The prior density ol 
this ratio is such that its median is exactly 1. The posterior median is 
larger (about 1 .7), suggesting stronger reactions to negative shocks (a1 > af) .  
However, the posterior distribution of a j a f  is spread enough to make the 
hypothesis a l = a t  not unlikely in view of the data.

GARCH (1, 1)

The posterior and predictive results were obtained using Monte Carlo 
with Importance Sampling, a numerical technique that is very stable and 
efficient in our application, where the parameter space is 1 1 -dimensional.
I he out-of-sample predictive density of к future return rates is obtained 
through averaging the sampling predictive density over the parameter space, 
with the use of the posterior density as the weight function:



Р(У/\У) =  !Р(У/\У, 0)p(0\y)dfí (8)
e

where

Т  + к Т +к

p(yf \y,0) =  П  р ( у М - 1 , 0 ) =  П  f M v , n „ K \ y ) .
1=*Г+1 l = r + l

The numerical approximation we base our results on requires simulating 

future values of the series from their sampling predictive density. For 

a given parameter vector, drawn according to the importance function r(0), 

a multivariate Student t density with 3 degrees of freedom, we recursively

generate y T+J, given y T+j-i (j =  1 ...... k) from the skewed t distribution (5).

I his is done by drawing a value ýr+j  from the appropriate symmetric 

Student t distribution and re-scaling it on the basis of its sign (yT+j = yyT+j 

ý r+j>  0 and y T+J = y ~ ly T+j otherwise). It is also of interest to forecast 
future levels of the series, i.e.

x T+j =  x r + j - 1 exp {ут+у  100}, for j  =  1 , ..., к (9)

In our M onte Carlo numerical strategy, drawings o f x T+J are immediately 

obtained from y T+J using the recursive formula (9). Thus, histograms of 

the univariate predictive distributions of x r+1, ..., x r+ * are calculated as a by-

product. Note that for x T+j, even the conditional sampling mean does not 

exist since the expectation of exp(yr+ j/100) is not finite. It is easy to prove 

that the product of exp (n • y j  100) and the conditional sampling density (5) 

is, for positive n and sufficiently large yt, an increasing function of yt and 

can be bounded from below by a positive number. Since such a function 

is not integrable in any interval (d, +  oo), no conditional and — in consequence 

no marginal predictive moments E ( x j +j\y, M )  exist, and thus we can 

only compute and report histograms and basic quantiles.

4. BAYESIAN O PTION  PRICING

4.1. Direct Approach Using the Predictive Distribution 

of Discounted Payoff

One o f the main applications of the Bayesian predictive analysis is 

option pricing as discussed by Bauwens and Lubrano (1997). Assume that 

the analysed stock exchange index is a tradable security and its price at 

time t is equal to its numerical value xf. Consider a hypothetical European



call option evaluated at time T  (the last period in the observed series), 
s units of time before maturity. The payoff function is (xT+t — K)*  = 
max{jcr+J — K,  0}, where x r+ , is the price of the underlying security at 
maturity (no dividend being paid) and К  is the strike (exercise price). The 
discounted (present value) payoff considered at time T  is

Wrir+i =  e " ( x r + . - K )  >

where r is the interest rate (assumed known for the sake of simplicity). Of 
course, this discounted payoff is a random variable as a measurable 
function of x r+ „ which is random. Direct option pricing would use the 
assumed statistical model for x, (and the data) to construct the predictive 
distribution of WT|Г+Ж and would not refer to any other theoretical speci-

fications or tools (like the famous Black-Scholes formula, based on different 

stochastic assumptions).

While the predictive distribution of Wt \t +s *s censored a* zero (and thus 

has a probability mass at this point), its right tail is essentially the same 

as the right tail of the underlying distribution of *r+j- As Osiewalski and 

Pipień (2003) already discussed, in the case of t-GARCIl models the 

conditional sampling mean E(xT+,\iyT+,- i,0)  is infinite due to non-integ- 

rability in the right tail. Thus, the corresponding sampling mean and the 

predictive mean of WT\T+, are also infinite. Hence, direct option pricing 

based on our i-G A RC H (l, 1) model cannot use this infinite predictive 

mean, contrary to the proposal by Bauwcns and Lubrano (1997).1 However, 

as they rightly remark, the main advantage o f the Bayesian direct approach 

is to provide a probability distribution with respect to which any observed 

(or contemplated) option price can be assessed. This benchmark is provided 

by the predictive distribution of the discounted payoff. 1  he latter distribution 

conditions on the observed data and the assumed statistical model. 1 he 

Predictive distribution of WrIT+s consists of a point mass at zero:

5

pr{ Wt i t +m = OIW =  Pr{xr+J Si К \y} = Pr{0.01 £  Ут+i < ln № г ) \у}

(10)

and a continuous part for WT[T+,e(0 ,  +  oo), defined by the density function 

P(^Tir+»|y) that is obtained from the truncated density p(xT+,\y)I(xT+, >  K). 

As Bauwens and Lubrano (1997) write, the predictive distribution of

1 Bauwens and Lubrano’s (1997) proposal to take the predictive mean of the discounted 

PayoiT can be useful in the context of stochastic volatility (SV) models (see Pajor, 2003), 

where normality оГ the conditional distribution of return rates is often acceptable -  in contrast 

lo GARCH models, which usually need heavier tails.



WT\T+, can be used by market participants who wish to ępmpare the model 
predictions to potential prices on the market or to other predictions. Also, 
a i-GARCH specification can be used to provide an “objective” option 
price СЛг+,- As the predictive mean of WVir+* is infinite, and thus can 
hardly be considered a reasonable price, one can consider the predictive 
median defined by the conditions

P r { t+i  ^  ^  ri г +* I .У } ^  0.5 and ^  Ст\т+1 \у\ ^  0.5.

O f course, this suggestion leads to CT]T+, =  0 when the point mass at zero, 

given by (10), is at least 0.5. It means that the “objective” price of an 

option, which with probability at least 0.5 would not be exercised (x T+, ^  K),  

is zero (except possibly for some fixed operation cost that is not considered 

at this level of reasoning). However, if the probability that the option will 

be exercised (хт+г> K)  is greater than 0.5, the option is priced at a uniquely 

defined level CT\t +i >  0.

In our empirical illustration we set the strike at the last observed value 

o f the stock index (K  =  x T =  11816.43). We set the interest rate at 

r =  0.14/360 (14% on annual base), which is roughly the average interest 

rate on 3 month deposits, paid by Polish commercial banks in the first 

half of 2001. At t = T  we consider hypothetical European call options of 

different maturity (s): 30, 60 or 90 working days. Table 3 shows the 

predictive probability that the option will not be exercised (i.e., the point 

mass at 0) and the quartiles: Qlt Q2 = C TIT+, (median) and Q3 of the 

predictive distribution of the discounted payoff WTfT+,.

Table 3. The point mass at 0 and quartiles of the predictive distribution of W'r |r+ I

Time to maturity (5) 30 60 90

P r {^ rx rł>  =  0 | y } - P r { x r + I < K | y } 0.500 0.501 0.497

O . ^ n r . J y ) 0.0 0.0 0.0

0.0 0.0 0.0

e ^ n r J y )
1105.3 2139.6 3227.3

Figure 4 shows histograms of the marginal predictive distributions of 

the value of W IG at time T  +  s, JCr+ „ for s =  30, s =  60, and s =  90, as 

well as the conditional distributions of WT]T+, given that the option is 

exercised (И̂ Г|Г+1 > 0, i.e. x r + , > K ) ;  remind that the latter distribution is 

continuous. Since the posterior (or predictive) probability that the option 

will be exercised is approximately 0.5 for all three values of s, the predictive 

probability that И ^ ^ + ^ О  is also 0.5 and hence the predictive median of



^riT+ . is О2. Thus the vertical line in the right panels of figure 4 represents 

only the median of the continuous part of the distribution of WT|Г+,. This 
median increases quickly with s due to the heavier and heavier right tail 
and increased spread of the predictive distribution.

Note that the assumed exercise price (K =  11816.43), represented in the 

•eft panels of figure 4 by the light square, is always lower than the true 

value of WIG at time Г + s ,  indicated by the dark square. Thus our 
hypothetical options would have been exercised. It is important to stress 
that the true values of Xj+,  (s =  30, 60, 90) lie in the areas of high 
Predictive density, indicating good forecasting properties of our GARCII 
specification even for relatively distant future periods. However, this is 

achieved at the cost of huge ex ante uncertainty.

4.2. Using the Black-Scholes Formula

Although the famous Black-Scholes formula for option pricing relies on 

very different assumptions than GARCH models for discrete time-series 

data, it is sometimes used with the volatility predicted on the basis of 

a GARCH specification for the observed return series. The Black-Scholes 

(BS) formula

B S T\T+t  =  x TN(d l) - K e - nN(d2), (11)

where N(.) is the cumulative distribution function of the standard normal 

distribution and

k w w r t j ,  d2 = i , - ' V > .
и  j — .- i  *

(Ty/s

can be viewed as a known function of the unknown volatility parameter 

a • In the GARCH framework, a  can be interpreted as the conditional 

standard deviation of 0.01>>7-+„ the return rate at time T  + s. Hcnce a is 

given by the equation

a  =  О.О1-у/Уаг(уг+||^г+»-1>0) = 0.01>/Лг+АУ»v).

marginal posterior (or predictive) distributions of this quantity (with 

s== 30, 60, 90) are presented in figure 5. The predictive character of p(a\y) 

is due to the dependence of a (for s >  1) on future (unobserved at time Г)

^T h is  is very different from the results presented by Osiewalski and Pipień (2003), 

°btained for different periods. Their option prices were positive.



Р(х т+зо I У) р(^т\т+30 I У>хт+ъо >  К )

5000 7500 10000 12500 15000 17500 20000 22500 25000 27500 30000

р ( х г + 60 I У)

Ullhnh.
О 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

P(W t ,t+ 60 I  У> ХГ+60 Ж )

232 
Jacek 

O
siew

alsk
i, 

M
ateu

sz 
P

ip
ie

ń



Р ( ^ Г / Г + 9 0  \У >ХГ+90 Ж )
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Fig. 4. Predictive histograms of x T+t and the continuous part of tVLT łt  (s =  30, 60, 90)



values of уг+1, Ут+ ,-1  through the future error terms er+1, £7-+ ,-!; 

see (l)-(2 ). In our M onte Carlo computations future growth (or return) 

rates are simulated using their conditional predictive distributions.

The Bayesian approach naturally leads to the posterior (or predictive) 

d istribution of BST|r+J (represented by the histogram s in figure 6), 

a continuous distribution induced by the distribution of a. The medians 

and intcr-quartile ranges of р(В5Г|Т+,|у ) are shown in table 4. The me-
dians can be taken as BS option prices and compared to other option 
prices, like Ст |Г+, proposed in subsection 4.1 or the values obtained 
using a “naive” approach that amounts to inserting the empirical stan-
dard deviation of the observed return rates into (II).  The predictive 
distribution of BST\T+,  is highly asymmetric and its spread grows with 
s. M ost of its probability mass is located below the third quartile of 
the predictive distribution of the discounted payoff И̂Г|Г+1; we can see 
that comparing figure 6 and table 4 to figure 4 and table 3. Since 
we treat the distribution of И̂л г+ , as a reference distribution, as ex-
plained in subsection 4.1, we conclude that the BS values (based on 
different assumptions than GARCH models) correspond to very likely 
values of the payoff function. This gives an empirical argument in fa-
vour of using the BS formula in the context o f GARCH models, in 
spite o f theoretical incompatibilities. As regards particular values of the 
random variable BST)Г+„  its predictive median (represented in figure 
6 by the vertical line) is quite close to the “naive” price (white square 
in figure 6).

Table 4. The predictive characteristics of BSr |r+ i and comparison 
to other option prices

Time to maturity (s) 30 60 90

450.7 680.8 879,0
е 2(ВХГ|Г+,|у) 518.5 774.0 988.4

С ,(В * г |г+.1)0 611.1 902.4 1152.5

Naive pricing 553.2 821.2 1042.93

e ^ n r + . i y ) 0 0 0

Finally, figure 5 also shows the BS implied volatility that corresponds to 
the predictive median of BST|r+ , (white square). This volatility value is 
approximately the median of the predictive distribution of a, i.e. the 
distribution presented in figure 6 .
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Jacek Osiewabki, Mateusz Pipień

BAYESOWSKA WYCENA EU RO PEJSK IEJ O PC JI KUPNA 

Z  WYKORZYSTANIEM M ODELU GARCH Z  ASYMETRIAMI

Streszczenie

W prezentowanym artykule wycena opcji jest traktow ana jako jedno z zastosowań 

bayesowskiej analizy predyktywnej. Rozkład wartości zdyskontowanej wypłaty, indukowany 

przez gęstość predyktywną przyszłych stóp zwrotu, jest podstawą bezpośredniej wyceny opcji 

(zob. Bauwens, Lubrano, 1997). Rozważamy też bardziej eklektyczne podejście, wykorzystujące 

rozkład predyktywny formuły Blacka i Scholesa (ze zmiennością określoną jako warunkowe 

odchylenie standardowe w momencie realizacji opcji).

Przyjmujemy ramy modelowe, które uwzględniają dwa rodzaje asymetrii w procesach 

G ARCH: skośne rozkłady warunkowe (typu t-Studenta) oraz zróżnicowane reakcje wariancji 

warunkowej na szoki dodatnie lub ujemne. Model: skośny f-G A RCH (l, 1) jest stosowany do 

opisu dziennej zmienności Warszawskiego Indeksu Giełdowego (WIG) od 4.01.1995 r. do 

8.02.2002 r. Dane do 28.09.2001 wykorzystujemy do budowy rozkładów a posteriori i predyk- 

tywnego oraz do ilustracji bayesowskiej wyceny opcji na pozostały okres.


