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Abstract. The article presents a proposal of using the Receiver Operating Character-

istic (ROC) and Cumulative Accuracy Profile (CAP) curves as a ranking-based method 

for a choice of regressors in probability model. The criterion of reggresors’ choice uses 
the value of summary statistics of discrimination based on ROC/CAP curves as well as it 

takes into account the shape of the curves itself.
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I. THE ISSUE AND THE ASSUMPTIONS

One of the key issue in the statistical modeling is the choice of regressors. 

Let us consider a probability model explaining the occurrence of an event de-

scribed by a binary variable Y and a potential regressor to specify the model X. 

Let us assume X  is a continous variable negatively correlated with Y taking value 

y>j = 1 for occurrence o f the event and y t *= 0 for non occurrence. Negative corre-

lation means the bigger X  value is the less probable is the event. Occurrence of 

an event will also be called a positive event (regardless of the nature o f the even, 

it can be for example default or failure) and non occurrence -  the negative event 

respectively.

Modeling the probability of an event can be regarded as a classification 

problem. Let us consider an example of bank’s client defaulting on a credit obli-

gation. Every client belongs to one of two populations: П0 for those who repay 

the debt contractually (negative event) or П] for those who default (positive 

event). Therefore a default variable Y is defined as:

( 1)
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where:

У/ -d efau lt indication fory-th client, j  = I, ...n.

At the moment of credit decision only regressor X is known (in practice the 

set o f X’s variables) also called a diagnostic variable. Client’s classification to 

П, or По is know only a posteriori, whereas a priori -  at the moment o f credit 

decision -  the probability of default event Y  = 1 can be estimated and therefore 

presumptions concerning client’s assignment to П| or П0 can be made. The bet-

ter the model is the better is the a priori classification and therefore more correct 

decisions are made. One of the necessary conditions for estimation o f a good 

model is its correct specification in terms of variables. It applies to the situation 

in which the set o f regressors is not known from the economic theory and must 

be decided by the researcher on the basis o f empirical data.

The basic postulate against the regressor is its ability to explain the phenom-

ena being modeled which results in stochastic dependence between regressor X  

and dependent variable Y. Stochastic dependence is defined by the difference in 

the conditional distributions, e.g. cumulative density functions F(X\Y). In case of 

binary variable Y  the stochastic dependence between X  and Y  as well as the de-

gree o f the difference of between F{X\Y= 0) and F(X\Y= 1) means the strength 

o f X  discrimination in respect to Y. It can be assessed by the measures of dis-

crimination which can be used as an alternative way to chose the regressors for a 

probability model P(Y) =flX).

II. THE RECEIVER CHARACTERISTOC CURVE 

AND THE CUMULATIVE ACCURACY PROFILE

The concept o f Receiver Operating Curve (ROC) was first introduced in 

signal detection theory. It originates also from psychology and especially medi-

cine, Hanley and McNail (1982). Over the last few years the concept o f ROC 

curves found interest in machine learning and data mining area as a tool for 

model evaluation.

The ROC curve plots values o f conditional cumulative distribution func-

tions: F(X\Y = 0) against F{X\Y= 1) over varying threshold л-. The empirical 

ROC curve is a plot of empirical CDFs: against Fn(X\Y= 1). In differ-

ent notation it is a plot of the true positive rate (,Fn( x |ľ 4 )  -  rate of correctly clas-

sified Y=  1 with threshold л-) over the false positive rate (F„(x|y= 0) -  rate of 

incorrectly classified Y  = 0). The ROC curve shows the ability o f X  variable to 

discriminate between two classes o f Y. The higher the ability is the more con-

cave is the curve since high rates o f correctly classified Y=  1 are matched to low 

rates of incorrectly classified Y=  0 for the same threshold x. The example of the 

empirical ROC plot is presented on the Figure 1.



Figure 1. ROC curves for a continuous X  variable

The summary statistics measuring the discriminative power o f X  is the area 

under the curve, called AUROC statistics. It measures the ranking quality o f the 

variables X  in respect to Y. The higher the value o f X  is the more probable the 

Y=  1 events, so the ranking based on the X values alone is the same as the rank-

ing o f probabilities P(Y=l)=f(X) based on a probability model.

The AUROC statistics takes values from 0 to 1 and can be interpreted in 

probabilistic terms. It is an estimate of the probability that a randomly chosen 

pair (/, k) of objects with y,=  0, yk = 1 will be correctly ranked by X  values, i.e. 

Xj> Xk -»  P(Y= \\X=xi) < P(Y=  1|X= Xk), which means the X  value will allow 

for correct classification over Y for that specific pair (/, k). A perfect ranking 

gives AUROC statistics equal 1 which means that all positive examples with 

У; = 1 are ranked lower that the negative ones with y} = 0. On the other hand the 

minimum value of AUROC statistics o f 0 shows a perfect reversed ranking, 

which means that all positive examples with y, = 1 are ranked higher that the 

negative ones with y, = 0. In that case: x, > xk -> P{Y= 1 \X= x )  > P(Y=  11X=Xk) 

which shows the positive correlation between X  and Y. Regardless of the sign of 

the dependence between both variables the values of AUROC statistics near to 1 

or 0 show (extremely) strong ability o f X  to discriminate over Y  which supports 

the decision o f inclusion X  variable in probability model specification.

In case of positive correlation between X  and Y the ROC curve will be plot-

ted below the diagonal and the ROC statistics will takes values <0; 0,5), nega-

tive correlation will give the curve over the diagonal with statistics’ values (0,5; 

1>. The value of 0,5 shows that a ranking of objects based on X  values is a ran-



dom one. It corresponds to the ROC curve plotted on the diagonal which shows 

for each consecutive threshold x the same value o f the rate o f incorrectly classi-

fied negative events (F„{x\Y= 0 )) as well as the rate of correctly classified posi-

tive events (7r„(x|7= 1)). In other words false and true positive rates are the 

same, so the variable X  cannot be used as a basis for ranking the objects in re-

spect o f Y variable as well as X  cannot be used as an explanatory variable in the 

model predicting the Y  event.

III. THE CUMULATIVE ACCURACY PROFILE 

AND GINI STATISTICS

A concept similar to ROC curve is Cumulative Accuracy Profile, CAP. The 

CAP curve is the plot o f values of conditional cumulative distribution function 

F(X\Y= 1) against unconditional F(X). Empirically it plots the true positive rate 

F„(x\Y= 1 ) -  rate of correctly classified positive examples with Y — 1 against the 

overall rate F„(x) o f examples cut off by the same л- threshold.

A summary statistics derived on the basis o f CAP curve is Gini measure 

which is defined as the ratio o f area between CAP and the diagonal to the area 

between perfect model and the diagonal. Gini measure ranges from 0 to 1. In the 

case of positive correlation between X  and Y which results in reversed ranking 

the Gini statistics takes values <-1; 0). The Gini statistics and the AUROC are 

linked via the formula, Engelmann (2006):

G = 2- AUROC -1  (2)

where:

G -  Gini statistics.

Since both curves ROC and CAP as well as their summary statistics are 

closely related to each other further considerations will use ROC curve only. All 

the conclusions will apply to CAP curve and Gini statistics as well.

IV. AUROC AND ROC CURVE SHAPE IN CHOICE 

OF REGRESSORS

As mentioned above the AUROC statistics significantly different from the

0,5 value confirms the ability o f X  variable to differentiate over Y. As a conse-

quence X  can be a good predictor for modeling the probability of Y event and 

therefore can be used in probability model P(Y) =fiX).



Additionally to the AUROC value the shape o f the ROC curve can be used 

in the process o f regressors’ choice. Let us assume two variables X \  and X I  with 

their ROC curves plotted on the Figure 2.
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Figure 2. ROC curves for X\ and XI variables, AUROC(Xl)=AUROC(A2).

Let us assume -  for simplicity -  that both variables have the same domain, 

so the respective thresholds x take the same values in absolute terms. If it is not 

the case both variables should be compared by relative thresholds represented by 

the same distribution quantiles instead o f absolute values. Furtherer considera-

tions are valid also for X \ ,X 2  variables with different domains.

Both variables X I, X2 from the Figure 2 have the same value o f AUROC 

statistics in respect o f the ability to discriminate over Y. Therefore both o f them 

seem to be of the same quality predictors in the probability model. However 

their ability to discriminate is different on the subparts of X \ , X I  domain. In the 

range o f lower X I , X I  values the ROC curve for X I  shows its better discrimina-

tive power. The threshold of XI which cuts off 10% of the negative (T = 0 ) 

events assigns correctly only 30% of all positive events to the П, population, 

whereas the same 10% threshold o f X I  assigns correctly 55% of the all positive 

events to the П| population. On the other hand XI discriminates better in the 

range o f higher X \ , X2 values. In that subpart of XI, X I  domains the variable X\  

reaches high true positive rate with lower threshold than XI.  For example in 

order to assign 95% of the positive events correctly to TL population as much as



70% of negative events are incorrectly assigned to П] basing on the same X I  

threshold whereas only 40% using the X \  variables.

On average both X I, X I  variables have the same discriminative power (over 

all possible thresholds) but their ability to discriminate is different in different 

subparts o f XX, X2 domains. It has practical implications. Let us consider the 

probability model supporting a credit decision at the moment client applies for a 

credit. The model is used to estimate the probability that a client will default on 

a credit but operationally it is important to indicate the most risky clients that 

will be rejected. Having the choice between two variables XI, X I  with the same 

average discriminative power the choice o f X I  should be supported since its 

better ability to discriminate in lower X I  values which -  in connection with 

negative correlation between X I  and Y -  means better ability to indicate the cli-

ent from П, population.

V. SU M M A R Y

Measures o f discrimination such as AUROC or Gini statistics can be re-

garded as alternative tools for measurement of stochastic dependency between 

two variables provided at least one of them is binary one. Such an interpretation 

of discriminatory measures allows for their use in the process o f choosing co-

variates in probability model.

Additional criterion of covariate choice is the shape of ROC/CAP curves. 

Depending on degree of concavity and the character of the event being modeled 

(e.g. default on a debt, product purchase) one o f two covariates can be found 

superior, although the value o f discriminatory measure is the same.
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DOBÓR ZMIENNYCH OBJAŚNIAJĄCYCH W MODELACH PRAWDOPODO-
BIEŃSTWA W OPARCIU O KRZYWE ROC ORAZ CAP

W artykule przedstawiono propozycję wykorzystania krzywych ROC (Receiver 

Operating Characteristic) i CAP (Cummulative Accuracy Profile) w doborze zmiennych 

objaśniających w modelu prawdopodobieństwa. Kryterium doboru zmiennych opiera się 

na wartościach miar dyskryminacji wyznaczonych na podstawie krzywych ROC/CAP 

jak i uwzględnia sam kształt krzywych.


