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BOOSTING REGRESSION MODELS

ABSTRACT. In a wide variety of classification problems, boosting technique have 

proven to be very effective method for improving prediction accuracy (Bauer, Kohavi, 

1999). While more evidence compiles about the utility of these technique in classifica-

tion problems, little is known about their effectiveness in regression. Freund and 

Schapire (1995) gave a suggestion as to how boosting might improve regression models 

using their algorithm AdaBoost.R.

The main aim of this article is to present an application of the new boosting method 

for regression problems which was introduced by Ridgeway (2005). We will discuss the 

influence of the main parameters of this algorithm, such as eg. learning rate or number of 

iterations on the model performance.
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I. EVOLUTION OF BOOSTING  METHOD

The starting point o f this paper is an interesting procedure called “boosting”, 

which is a way of combining many “weak” classifiers1 to produce a powerful 

“committee”. The first simple boosting procedure was introduced by Schapire 

(1990). The work on this algorithm had a culmination in the work of Freund and 

Schapire (1995) who introduced the AdaBoost algorithm. They discovered an 

algorithm that sequentially fits “weak” classifiers to different weightings of the 

observations in the data set. Those observations that the previous classifier 

poorly predicts receive greater weight on the next iteration. The final AdaBoost 

classifier is a weighted average of all weak classifiers. In the conclusion paper, 

Freund and Schapire (1995) outline their ideas for applying the boosting method 

for regression problem and introduced AdaBoost.R algorithm.

Friedman (2001) and the companion paper Friedman (1998) extended the work 

of Freund and Schapire (1995) and created the ground work for a new generation of 

boosting algorithms: gradient boosting machine. Gradient boostingconstructs
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1 A weak learner is an algorithm for producing a two-class classifier with performance guar-

anteed to be better than a coinflip.



additive regression models by sequentially fitting a simple parameterized func-

tion (base learner) to current “pseudo” residuals by least-squares at each itera-

tion. The pseudo-residuals are the gradient o f the loss functional being mini-

mized with respect to the model values at the training data point, evaluated at 

a current step.

Boosting technique has proven to be very effective method for improving 

accuracy (Bauer, Kohavi, 1999) mainly in a wide variety o f classification prob-

lems. While more evidence compiles about the utility of these technique in clas-

sification, little is known about their effectiveness in regression.

The main aim of this article is to present an application o f the new boosting 

method for regression problems which was introduced by Ridgeway (2005). The 

gbm package in R program, where this new solution is implemented, takes the 

approach described in Friedman (2001, 2002) and uses his gradient descent op-

timization algorithm.

II. GRADIENT DESCENT OPTIMIZATION ALGORITHM

In the function estimation problem we have a system with a random output 

у  and a set o f random input variablesx = {дг,,дг2, . Given a training sam-

ple {x, , У/} 0  = Ь 2 ,..., N), the goal is to find a function F *(\) that maps x to

у  such that the expected value of some specified loss function L(y, F(x)) is mini-

mized:

F ‘(x) = argm in£vx[z(.y,.F*(x)] (1)
F{x)

Boosting approximates F*(x) by an additive expansion o f the form (Fried-

man, 2002):
M

(2)
m - 0

where the function h(x, a) (“base learner”) are usually chosen to be simply func-

tions o f x with parameters a = {ax,a2,...} . The expansion coefficients ym (m = 0,

1,..., M) and the parameters a„, are jointly fit to he training data in a forward 

“stage-wise” manner.

We start with an initial guess F0( \ ) :



^o(x) = a r g m i n ^ l ( y „ / )

Г (=1

(3)

For »1 = 1, 2 ,..., M  the algorithm determines the direction, the gradient 

(pseudo-residuals):

У  im =  -

dL{y„F{x,))

dF(x,)
(4)

F(x)-F„. ,(x)

in which it is needs to improve the fit to the data and selects a particular model 

from the allowable class o f functions that is most in agreement with this direc-

tion, It means that the base learner h{x, a) is fit by least-squares to the current 

pseudo-residuals y jm :

N

a m = a rg m in ]T [ü m - ß i ( x „ a ) f .  (5)

• J  м

Then, given h(x,am), the optimal value of the coeffic ien t^  is determined:

N

Ym = arg m in Liy, ,Fm_x (x,) + ^ (x , , a„,)) (6)

r i-1

At the end update Fm(x) as:

Fm(*) = Fm_x(x) + ymh(x,*m). (7)

Friedman (2001) takes also into account the possibility o f overfitting2 occur-

rence. The natural source of overfitting in boosting algorithm is the number of 

iterates M. To avoid this problem Friedman proposed a slight modification of (7) 

introducing a regularization parameter (learning rate) X  (0 < Л  <  1):

Fn,( \)  = Fm_](x)+ Xr„ ,h(x,aJ, (8)

2 The problem occurs when the model is to complex that it takes into account not only the 

dependence but also the noise.



When using classification or regression trees Friedman relates the learning 

rate to regularization by shrinking. Motivated by Breiman (1999), a minor modi-

fication of gradient boosting was made to incorporate randomness as an integral 

part of procedure. Particularly at each iteration a subsample o f the training data 

is drawn at random (without replacement) from the full training data set. This 

randomly chosen subsample is then used, instead o f the whole sample, to fit the 

base learner and compute the updated model for the current iteration.

2. Select p x  N  cases from the dataset and fit a regression tree with К  termi-

nal nodes:

III. THE GBM ALGORITHM

The gbm implementation of boosting is as follows (Ridgeway, 2005):
N

Initialize F0( \ )  to be constatnt, .F0(x) = arg m in ̂ /-(у,,/?). For m = 1,

p  1=1

2

1. Compute the negative gradient as a working response:

dL{y„F(x,))
(9)

g(x) = E(z  I x). ( 10)

3. Compute the optimal terminal node prediction p l,p 2,...,pK, as:

( 1 1 )

where Gk is a set o f xs that define terminal node k.

4. Update F„,(x)as:

Fm (x) = Fm-\ (x) + APk(x) , ( 12 )

where k(x) indicates the index of the terminal node into which an observation 

with features x would fall,. X is the shrinkage (or learning rate) parameter.



The main control parameters in this implementation o f boosting are:

• the number o f iterations Ar(n.tree),

• the shrinking (learning rate) parameter X (shrinkage),

• the subsampling ratep  (bagg.fraction).

IV. EXPERIMENTS

The main aim o f the paper is to analyze the influence of the main parameters 

of the algorithm on the model accuracy. In the experiments three benchmarking 

datasets were used (Blake C., Keogh E., Merz C. J.. 1988). They were divided 

into training (80%) and test (20%) sets.

Table 1. Used data sets

Name Number of observations Number of predictors

Boston 506 13

Ozon 366 12

Friedman I 500 10

The aim of the first experiment was to analyze the influence of different 

learning rate values on the aggregated model accuracy, measured by the model 

error. We used four possible values: 0.001, 0.01, 0.1 and 1. The ensemble in-

cludes 10000 single models. The error was calculated as:

v = X  w' -  /(*/ ))2' (13)
L w' i

It was calculated on training and test sets and by cross-validation method.

As there were space limits only some results will be presented. The results 

show that decreasing value of learning rate needs more iterations in order to gain 

lower resubstitution error3. But the error calculated on test set and by cross- 

validation method reveals overfitting. It is more noticeably for higher values of 

the learning rate. Moreover, especially in the beginning iterations, we can ob-

serve that for higher values of the learning rate, the error reduction is more rapid. 

With higher values of the learning rate, the error more quickly becomes very 

flat.

3 It is calculated on the training set.
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Figure I . Influence of the learning parameter value (Я) on an aggregated model error

Experiments with other data sets confirm the same behavior. It allows us to 

say that the learning rate value depends on the number o f iterations. For a given 

number o f iterations (parameter M), the learning rate shouldn’t be too high, be-

cause we can cause overfitting, but it also shouldn’t be too low, because the 

model won’t reduce the error enough.

The aim o f the second experiment was to analyze the influence o f the 

bagg.fraction parameter value on the error of the aggregated model. This pa-

rameter is responsible for the fraction o f observations from the original training 

set that are chosen to the next training data subsets. In experiments we used four 

values: 0.3, 0.5, 0.7, 0.9. The aggregated model consists o f 1000 single models, 

and the learning rate parameter is equal to 0.01. The results show that the more 

observation we choose to the subsets, the lower resubstitution error we can get, 

but also we can cause overfitting, what is seen on the base of test set error.
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Figure 2. Influence of the bagg.fraction parameter value (p) on an aggregated model error

V. CONCLUSIONS

To summarize we can say that accuracy o f aggregated model being built by 

the gbm package depends mainly on values of two parameters: the number of 

iterations (parameter M) and the learning rate (parameter Á). Very important 

influence on their optimal setting has the possibility of overfitting occurrence. 

Higher values o f the learning rate need less iterations in order to protect against 

it. It results in shorter computational time, but we get relatively higher error 

value. Lower values o f the Я parameter need more iterations. Time needed for 

model construction is longer then but lower error rate is obtained. As far the 

third parameter -  fraction of observations chosen to following training subsets -  

the algorithm seems not to be veiy sensitive on its value.



REFERENCES

Blake C., Keogh E., Merz C. J. (1988), UCI Repository o f Machine Learning Databases. 

Department of Information and Computer Science, University of California, Irvine.

Bauer E., Kohavi R. (1999) An empirical comparison of voting classification algorithms: 

bagging, boosting, and variants, Machine Learning, 36, p. 105-139.

Breiman L. (1999), Using adaptive bagging to debias regression, Technical Report, Sta-
tistics Department, University of California, Berkeley.

Freund Y. (1990), Boosting a weak learning algorithm by majority, Proceedings o f the 

3'J Annual Workshop on Computational Learning Theory, p. 202-216.

Freund Y. (1995), Boosting a weak learning algorithm by majority, Information 
and Computation, 121 (2), p. 256-285.

Freund Y., Schapire R. E. (1995), A decision-theoretic generalization of on-line learning 

and an application to boosting, Proceedings o f the 2nd European Conference on 
Computational Learning Theory, Springer-Verlag, p. 23-27.

Friedman J. (2001) Greedy function approximation: a gradient boosting machine, Annals 
o f Statistics, 29(5), p. 1189-1232.

Friedman J. (2002), Stochastic gradient boosting, Computational Statistics and Data 
Analysis 38(4), p. 367-378.

Friedman J., Hastie T., Tibshirani R. (1998), Additive logistic regression: a statistical 
view of boosting, Technical Report.

Ridgeway G. (2005) Generalized boosted models: A guide to the gbm package, 

http://i-pensieri.com/gregr/papers/gbm-vignette.pdf

Dorota Rozmus

AGREGACJA MODELI REGRESYJNYCH METODĄ BOOSTING

Boosting jest jedną z najlepszych metod agregacji modeli dyskryminacyjnych (Bau-

er, Kohavi, 1999). Liczne badania empiryczne potwierdzają możliwość znacznej popra-

wy jakości modeli klasyfikacyjnych, niewiele jednakże wiadomo na temat efektywności 

tej metody w przypadku modeli regresyjnych. Freund i Schapire (1995), stosując swój 

algorytm AdaBoost.R, podjęli próbę wykorzystania metody boosting do tego typu za-
gadnień.

Głównym celem artykułu jest prezentacja nowej implementacji metody boosting 

w regresji, która opracowana została przez Ridgeway’a (2005). W przeprowadzonych 

eksperymentach zbadany został wpływ wartości podstawowych parametrów tego algo-

rytmu, takich jak np. współczynnik uczenia, czy też liczba iteracji, na jakość modelu 
zagregowanego.


