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Abstract. The paper presents an econometric evaluation of possibilities of effective 

control in a system of ‘transport-reserves’ type with an emergency supply. The system 

consists of one sender of resources and one receiver of resources, and has a stock 

reservoir, which secures continuous operation of the receiver even if there is a supply failure.

The effectiveness of the system operation (in economical terms) was assessed on the 

basis of the so-called function of losses. The function takes into account the total system 

losses, which are connected with: resources supply costs, storage costs and emergency 

supply costs from external suppliers. The function of losses also accounts for additional 

profits resulting from the sale of the excess resources to external buyers.

The detailed econometric analysis of the function of losses for different variants of 

the system operation provided a lot of practical conclusions, which make it possible (by 

means of appropriate choice of the parameters) to control the system in such a way 

that its operation is the most effective.
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1. INTRODUCTION

Our investigations are closely related with the theory of storage, which 

since the beginning of the 30s of the XX century (i.e. the time of publication 

a classic Wilson’s Economic Order Quantity model) has begun its own very 

fast progress. The theory of storage began another progress in the 50s of 

the last century (i.e. first M oran’s works related to the water dams 

systems), and this time because of the applications of probabilistic methods 
in that theory.
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In the theory of storage very different models are examined. Generally, 

these models can be classified according to the following criteria:

-  First criterion refers to the manner of interpretation of time in the 

models -  in scientific literature the systems with continuous and discreet 

time are considered,

-  Second criterion refers to the manner of change of the stock level

-  in scientific literature the systems with continuous and jump stock level 

changes are considered.

The models with jump stock level changes embrace: the so-called 

“inventory models” (which were analyzed by Arrow, Karlin, Scarf) and 

“insurance models” (which were analyzed by Lundberg, Cramer, Buhlman). 

The models with continuous stock level changes embrace: “dams models” 

(for example water dams models) which were analyzed by Moran, Gani, 

Prabhu and “transport-reserves models” (which were analyzed by Gładysz, 

Galanc, Król). The systems of “transport-reserves” type are the subject of 
our analysis.

2. MATHEMATICAL MODEL OF THE SYSTEM OPERATION

Mathematical model of the system operation can be briefly characterized 
by the following scheme:
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The system consists of one sender of resources (marked “N ” on the 

scheme) and one receiver of resources (marked “O”). The receiver requires 

that resources must be delivered to him at constant speed (a> 0 ). Because 

supply system is subject to random failure, resources are delivered by 

sender at constant speed (c > a >  0), which is greater than needed, and 

excess of the resources at speed (c — a >  0) is accumulated in the reservoir 

(marked “M ”) at constant capacity (F> 0), which is located near receiver. 

The main purpose of the reservoir is to secure continuous operation of the



receiver even if there is a supply failure. In that case, the receiver can get 

resources dircctly from the reservoir at speed (a> 0 ). Frequency of failure 

occurrence in transport - subsystem can be characterized by parameter 

qt > 0, while frequency of failure elimination can be characterized by 

parameter q2 >  0.

The systems of this type are observed in many branches of national 

economy, such as: coal processing, oil and earth gas processing, food 

processing, distribution of commodities etc.

Mathematical model of system operation can be described by the 

following stochastic partial differential equations:
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where:

t -  is time;

z -  is the stock level in the reservoir;

gY(t, z) -  is density function of the probability distribution of the 

reservoir filling, when part “NM” of transport -  subsystem is working;

g2(t, z) -  is density function of the probability distribution of the 

reservoir filling, when part “NM” of transport -  subsystem suffers failure;

Pn(t) -  is probability of resources excess in the system reservoir;

Pd(t) -  is probability of resources shortage in the system reservoir.

The differential equations take into consideration the dynamics of 

system operation (that means time variability of probability distribution of 

the reservoir filling, probabilities of resources shortage and excess as well 

as frequencies of failure occurrence and failure elimination). For such 

reasons it is very difficult to solve them in the analytical way.

So far, only analytical solutions for the systems of “transport-reserves” 

type are well known, which operate in stabilized conditions (the so-called 

“stationary variant”). For that variant the system essential parameters are 

time independent: q^t)  = qu q2(t) = q2, g^ t,  z) =  g^z), g2(t, z) = g2(z),

Pä(t) =  Pd, Pn(t) =  Pn-
Moreover, analytical solutions for a “quasi-dynamic” variant of system 

operation can be obtained. That variant is characterized by equal and time 

independent frequencies of failure occurrence and failure elimination:



qt(t) =  q2(t) =  q > 0, stability of probability distribution of the reservoir 

filling between lower (z =  0) and upper (z =  V) barrier: g^ t,  z) — gx(z), 
g2(t, z) =  g2(z) and variability in time of the probabilities of resources 

shortage and excess: Pd(t), P„(t).
Obtained solutions depend in both variants on the values of the system 

characteristic parameter:

(2)

where:

^1 -  is average speed of reservoir emptying;
9i +  Ч2

v. — (c — a) -  is average speed of reservoir filling.

If parameter (к =  0), then we can say that system works regularly (i.e. 

that on average the same amount of resources is loaded to reservoir as is 

taken out of reservoir -  reservoir is used effectively and acts as a buffer 

between sender and receiver).

If parameter (к Ф 0), then we can say that system works irregularly 

(more often than in regular variant the disadvantageous situations of 

resources shortage or resources excess will occur in reservoir).

Below some examples of obtained solutions for variant “quasi-dynamic” 

are presented:

Regular variant of the system operation ( к  =  0)

(3i(z) =  CO, g2(z) =  CO,

| ^ ( 0  = ne~ą, + 0co = v e ~4t + Pdg, 0 )

[P „(t)=  - l i z - ąt + 0co= + P*

where:

Pdg -  is probability of resources shortage for regular and stationary 

system, for q — qt — q2 > 0;

Png -  is probability of resources excess for regular and stationary 

system, for q = qy = q2 > 0; 

a 1
0 — у ’ ca = 2̂ 0 +  Yj ’ —О с о ^ц ^ О с о -  are some parameters.



If parameter (ji — 0), then we obtain known solutions for the stationary 

and regular variant with the same frequencies of failure occurrence and 

failure elimination: q =  =  q2 > 0.

Irregular variant of the system operation ( к  Ф  0)

с — a
9i(z) = coekz, g2(z) =  ( 1 + — - Ok )c»e*\

Pd(t) = це v  + 0co[ 1 +  C— ~  Ok ) =  це 4‘ + Pdg, (4)

Pn(t) =  — це 4‘ -f -— U 0coekV — — це ąt +  P,»а

where:

Pdg -  is probability of resources shortage for stationary and irregular

system, for q = qt = q2 >0\

Png -  is probability of resources excess for stationary and irregular

system, for q — =  q2 > 0;

a к
0 = —> ft) =

^  l [ e kV( — -  0 / c  +  1 )  —  1

0co[ I + C a 0 k ] ^ f i ^  0coekV 
a I a

are some parameters.

3. THE DEFINITION OF FUNCTION OF LOSSES

The effectiveness of the system operation (in economic terms) can be 

assessed on the basis of the so-called function of losses. The function of 

losses takes into account total system losses, which are connected with the 

following costs:

-  Resource supply costs from sender;

-  Storage costs in reset voir;

-  Emergency supply costs from external suppliers in the situation of 

resources shortage;

-  Function of losses also accounts for additional profits from the sale 

of the resources excess to external buyers.
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where:

£(т) -  is a unit purchase price of resources delivered by sender;

i//(t,z) -  is a function which defines storage costs and depends on time 

and stock level;

Ft(z) -  is a distribution function of reservoir filling between its lower 

and upper barrier;

m -  is a price parameter which defines price relations between unit price 

of purchase of resources from sender and unit price of emergency purchase 

in situation of shortage;

n -  is a price parameter which defines price relations between unit price 

of purchase of resources from senders and unit price of their resale to 

external buyers in the situation of excess,

The function of storage costs will require a more detailed explanation. 

In practice, for a particular system this function may be determined using 

econometric methods, on the grounds of empirical observations of storage 

costs in dependence on time and stock level.

To simplify the analysis we have assumed, that the function of storage 

costs is a product of two functions:

i//(T,z) = rj(ľ)<p(z) (6)

where:

<p(z) -  is a function of storage costs dependent on the level of stock 

accumulation,

t](t) -  is a function which describes changes of storage costs in time (it 

can be, for example inflation function).

To define a function of storage costs depending on the level of stock 

accumulation we used a well known in economics coefficient of elasticity 

for storage costs:



We assumed that this coefficient is proportional to stock level in the 

reservoir and also proportional to its storage costs:

£ > (* )] =  W  4 *) (8)

where:

Я -  is a proportionality coefficient; 

ô -  is a certain numerical coefficient.

As a result the function of storage costs is described by the following 

differential equation:

d(P№ i  b ( \
~ d  - = V W  (9)

The solution of this equation at adequately well-chosen boundary 

conditions will lead to obtaining various analytical forms of function of 

storage costs.

4. PRACTICAL CONCLUSIONS

The detailed econometric analysis of function of losses for different 

variants of the system operation resulted in a lot of practical conclusions, 

which makes it possible (by means of appropriate choice of parameters) to 

control the system in such a way that its operation is the most effective.

The econometric analysis of efficiency of the system “transport-reserves” 

operation included the following stages:

1. First of all we investigated the influence of reservoir capacity on the 

amount losses by system working in stabilized conditions (the so-called 

stationary variant). We obtained relations between parameters charac-

terizing the economic conditions in which the system operates (such as: 

storage cost parameters, price parameters etc.), which makes it possible to 

examine (in an easy way) the influence of reservoir capacity on the 

quantity of system losses. The obtained conditions enabled the deter-

mination of the optimal values of reservoir capacity at which the system 

losses are the least. Practical use of obtained results is very important, 

because they make it possible to determine proper storage capacity (at the 

stage of planning a system), so that the system will work possibly most 

effectively. Besides the corrections for the systems already working in 

practice are made possible. Below we present some examples of obtained 

practical conclusions.



Example:

-  When parameters characterizing the dynamics of changes of storage 

costs (parameter Л and parameter y0 — determining constant maintenance 

cost of empty reservoir) and parameters which determine the price relations

assume the following values: Л > 0, m - n >  J °  > 0 , then stationary system

always ends in losses (independently on reservoir capacity). The function 

of losses (Figure 1) in that case possesses minimum for the certain optimal 

storage capacity (the value of optimal capacity can be estimated numerically). 

From the point of view of the system operation efficiency it will work, in 

such a case, most effectively at determined optimal reservoir capacity. Too 

small, or too large reservoir capacities in relation to optimal capacity will 

lead to large losses (the system will work less effectively).

V

Fig. 1. Graphs of function of losses for the system of “transport- reserves” type, when values 

of parameters characterizing the system operation are equal: <?, =  1, q2 = 2, с =  3000, 

a =  2000, a =  10, y0 - 100, 0 =  1000, vt =  660.7, S =  0.95, m =  1.1, n — 1. The numeric value 

of optimal reservoir capacity, for which system gets minimal losses and the numeric value of 

losses for that optimal capacity are equal: Ve =  8707, S(V„) =  20197

2. Moreover, for the stationary systems we compared the efficiency of 

system operation in a “basic system” with efficiency of analogous system 

in which storage costs depend on the stock level. Comparative analysis 

provided interesting conclusions which make it possible to control the 

system in such a way (by appropriate influence on the storage costs 

parameters) that its operation is the most effective.



The conclusions (Figure 2) are as follows:

-  If the system is characterized by the following property: storage costs 

increase when the stock level increases (which is expressed by positive 

values of parameter X), then its losses will always be greater than analogous 

losses of the basic system (for which parameter Я is equal zero). The basic 

system will in that situation always work more efficiently. Moreover, if 

storage costs increase more quickly when the stock level rises (which is 

expressed by large positive values of parameter Я), then the system will 

suffer greater losses.

-  If the storage costs decrease when the stock level increases (which is 

expressed by negative values of parameter Я), then its losses will always be 

smaller than analogous losses of the basic system. The basic system will 

in that situation always work less efficiently. Moreover, if storage costs 

decrease more quickly when the stock level rises (which is expressed by 

large negative values of parameter Я), then the system will make smaller losses.

-  If the values of parameters characterizing the storage costs accomplish 

the following relations: (<5—► + oo) and (y0 < 1) or (<5-> -  oo) and (y0 >  1), 

then losses of such a system will be comparable to losses in the basic system.

The obtained conclusions show that storage costs essentially influence 

the efficiency of the system operation.
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Fig. 2. The function of losses for the system of “transport-reserves” type, when the parameters 

characterizing the system operation are equal: q, = 1, q2 = 2, с = 3000, a = 2000, a = 10, 

v, =  666.7, 0 =  1000, y0 =  100, V=  10, m =  1, n =  1



3. In econometric evaluation of system operation efficiency we also 

carried out the time -  analysis of efficiency of “quasi-dynamic” system 

(taking into consideration time variability of the economic conditions in 

which the system operates). Such type analysis is especially interesting, 

because it enables the examination of system efficiency in a long time 

horizon (range). We obtained the conditions for the numerical values of 

parameters, which characterize the dynamics of time variability of probability 

of resources excess and shortage and for the parameters characterizing price 

relations. These conditions make the investigation of trend of function of 

losses easier. It is very useful to determine such time intervals in the 

assumed time horizon (range) in which the system makes losses or brings 

the so-called additional profit (negative values of function of losses). The 

practical significance of obtained results is very essential for the system 

operation, because they make it possible to select properly the parameters 

characterizing the system operation (at the stage of system designing), so 

that the system will operate efficiently for as long as possible. Below we 

present some examples of obtained conclusions.

Example:

-  The system makes losses in time interval (0 <  t < ts) and then gains 

profit (which increases without time limit), when probability of resources 

shortage decreases and probability of resources excess increases in time, 

(which takes place when parameter ц >0 )  and between price parameters 

the following dependences exists: (ng < n ^ n g ), (o<m<mq ) or (n > n g ), 

(m«2 < m < me,)- that case the function of losses as a trend function 
reaches its maximum. The system will suffer the greatest losses at the 

moment of time (0 < t = te < ts). The limit values of price parameters (in 

above dependencies) and numerical values for the moments of time te, r, 

can be determined numerically.

From the point of view of the system operation efficiency (Figure 3) 

the system operates more efficiently after time te and the most efficiently 

after time ts (additional profit).

1 he time variability of function of losses (Figure 4) for the “quasi-dy-

namic” system for the different variants of its operation can be illustrated 

by the following three-dimensional graph.



30 000

20 000

10 000

Fig. 3. The graphs of function of losses for the “quasi-dynamic” system of “transport-reserves” 

type for the different values of the parameters characterizing its operation, when с =  4000, 

a = 2000, a = 10, Sa =  2550, q =  0.5, Pdt =  0.4, Png =  0.4, i =  0.12
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Fig. 4. The function of losses for the system of “transport-reserves” type, when the parameters 

characterizing the system operation are equal: с =  4000, a =  2000, a = 10, S„ =  2550, q =  0.5, 

^ = ° - 4> = < = 0.12, m = 0.1, fi = 0.2
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EKONOMETRYCZNA OCENA EFEKTYWNEGO STEROWANIA 

SYSTEMEM TYPU „TRANSPORT-ZASOBY”

(Streszczenie)

W pracy przedstawiono ekonometryczną ocenę możliwości efektywnego sterowania pewnym 

systemem typu „transport-zasoby” z awaryjnym układem transportowym, składającym się 

z pojedynczego nadawcy zasobów i pojedynczego ich odbiorcy oraz z magazynem zasobów 

jako buforem, zapewniającym ciągłą pracę odbiorcy, nawet w sytuacji awarii dostaw zasobów 

od nadawcy. Za miarę efektywności funkcjonowania systemu (w aspekcie ekonomicznym) 

przyjęto tzw. funkcję strat, uwzględniającą sumaryczne straty systemu związane z kosztami 

pozyskiwania zasobów od nadawcy, kosztami magazynowania ich zapasów oraz kosztami 

awaryjnego pozyskiwania brakujących zasobów od innych kontrahentów zewnętrznych (w sytuacji 

ich deficytu). W funkcji strat uwzględniono także ewentualne dodatkowe zyski systemu, 

wynikające ze sprzedaży nadwyżki zasobów magazynowych (w sytuacji ich nadmiaru) kon-

trahentom zewnętrznym. Szczegółowa ekonometryczną analiza funkcji strat dla różnych 

wariantów funkcjonowania systemu pozwoliła na uzyskanie szeregu wniosków o istotnym 

znaczeniu praktycznym, które umożliwiają takie sterowanie funkcjonowaniem systemu (poprzez 

odpowiedni dobór jego parametrów), aby funkcjonował on najbardziej efektywnie (ponosił 
relatywnie niskie straty).


